Spaces:
Sleeping
Sleeping
fix: disable WandB
Browse files- train_sft.py +7 -4
train_sft.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
-
|
| 2 |
import sys
|
| 3 |
import json
|
| 4 |
from datasets import load_dataset
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
|
| 6 |
from trl import SFTTrainer
|
| 7 |
|
|
|
|
|
|
|
| 8 |
DRY_RUN = "--dry-run" in sys.argv
|
| 9 |
|
| 10 |
MODEL_ID = "Salesforce/codegen-350M-multi"
|
|
@@ -55,7 +57,7 @@ training_args = TrainingArguments(
|
|
| 55 |
save_steps = 200,
|
| 56 |
|
| 57 |
fp16 = False, # no half‐precision on CPU
|
| 58 |
-
report_to =
|
| 59 |
)
|
| 60 |
|
| 61 |
# 4) instantiate trainer
|
|
@@ -65,8 +67,9 @@ trainer = SFTTrainer(
|
|
| 65 |
train_dataset=(tokenized if DRY_RUN else ds),
|
| 66 |
)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
print(f" –
|
|
|
|
| 70 |
|
| 71 |
if not DRY_RUN:
|
| 72 |
# only run the real training if you didn’t pass --dry-run
|
|
|
|
| 1 |
+
import os
|
| 2 |
import sys
|
| 3 |
import json
|
| 4 |
from datasets import load_dataset
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
|
| 6 |
from trl import SFTTrainer
|
| 7 |
|
| 8 |
+
os.environ["WANDB_MODE"] = "disabled"
|
| 9 |
+
|
| 10 |
DRY_RUN = "--dry-run" in sys.argv
|
| 11 |
|
| 12 |
MODEL_ID = "Salesforce/codegen-350M-multi"
|
|
|
|
| 57 |
save_steps = 200,
|
| 58 |
|
| 59 |
fp16 = False, # no half‐precision on CPU
|
| 60 |
+
report_to = [], # disable WandB/others
|
| 61 |
)
|
| 62 |
|
| 63 |
# 4) instantiate trainer
|
|
|
|
| 67 |
train_dataset=(tokenized if DRY_RUN else ds),
|
| 68 |
)
|
| 69 |
|
| 70 |
+
if DRY_RUN:
|
| 71 |
+
print(f"\n✅ DRY-RUN: Trainer instantiated:\n – model: {type(model)}\n – tokenizer: {type(tokenizer)}\n – train_dataset size: {len(tokenized if DRY_RUN else ds)}")
|
| 72 |
+
print(f" – SFTTrainingArguments: {training_args}")
|
| 73 |
|
| 74 |
if not DRY_RUN:
|
| 75 |
# only run the real training if you didn’t pass --dry-run
|