Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import (GPT2Tokenizer, GPT2ForSequenceClassification) | |
labels_ids = {0: "Human Generated", 1: "AI Generated"} | |
model = GPT2ForSequenceClassification.from_pretrained(pretrained_model_name_or_path='ErnestBeckham/gpt-2-finetuned-ai-content') | |
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path='ErnestBeckham/gpt2-tokenizer-ai-content') | |
text = st.text_area("Paste your Content (512 word limit)") | |
if text: | |
tokenized_input = tokenizer(text, return_tensors='pt') | |
with torch.no_grad(): | |
outputs = model(**tokenized_input) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
st.write(f'Predicted Label: {labels_ids[predicted_class]}') |