Spaces:
Running
Running
Add application file
Browse files
README.md
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
title: IllusionDiffusion
|
| 3 |
emoji: 🔥
|
| 4 |
colorFrom: green
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.36.1
|
| 8 |
app_file: app.py
|
|
|
|
| 2 |
title: IllusionDiffusion
|
| 3 |
emoji: 🔥
|
| 4 |
colorFrom: green
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.36.1
|
| 8 |
app_file: app.py
|
app.py
CHANGED
|
@@ -27,16 +27,14 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
|
|
| 27 |
|
| 28 |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
|
| 29 |
|
| 30 |
-
# Initialize both pipelines
|
| 31 |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float32)
|
| 32 |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float32)
|
| 33 |
|
| 34 |
-
# Initialize the safety checker conditionally
|
| 35 |
SAFETY_CHECKER_ENABLED = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
| 36 |
safety_checker = None
|
| 37 |
feature_extractor = None
|
| 38 |
if SAFETY_CHECKER_ENABLED:
|
| 39 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
| 40 |
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 41 |
|
| 42 |
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
@@ -46,11 +44,10 @@ main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
| 46 |
safety_checker=safety_checker,
|
| 47 |
feature_extractor=feature_extractor,
|
| 48 |
torch_dtype=torch.float32,
|
| 49 |
-
)
|
| 50 |
|
| 51 |
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
|
| 52 |
|
| 53 |
-
# Sampler map
|
| 54 |
SAMPLER_MAP = {
|
| 55 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
| 56 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
|
@@ -58,18 +55,13 @@ SAMPLER_MAP = {
|
|
| 58 |
|
| 59 |
def center_crop_resize(img, output_size=(512, 512)):
|
| 60 |
width, height = img.size
|
| 61 |
-
|
| 62 |
-
# Calculate dimensions to crop to the center
|
| 63 |
new_dimension = min(width, height)
|
| 64 |
left = (width - new_dimension)/2
|
| 65 |
top = (height - new_dimension)/2
|
| 66 |
right = (width + new_dimension)/2
|
| 67 |
bottom = (height + new_dimension)/2
|
| 68 |
-
|
| 69 |
-
# Crop and resize
|
| 70 |
img = img.crop((left, top, right, bottom))
|
| 71 |
img = img.resize(output_size)
|
| 72 |
-
|
| 73 |
return img
|
| 74 |
|
| 75 |
def common_upscale(samples, width, height, upscale_method, crop=False):
|
|
@@ -87,7 +79,6 @@ def common_upscale(samples, width, height, upscale_method, crop=False):
|
|
| 87 |
s = samples[:,:,y:old_height-y,x:old_width-x]
|
| 88 |
else:
|
| 89 |
s = samples
|
| 90 |
-
|
| 91 |
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
| 92 |
|
| 93 |
def upscale(samples, upscale_method, scale_by):
|
|
@@ -111,7 +102,6 @@ def convert_to_base64(pil_image):
|
|
| 111 |
image.save(temp_file.name)
|
| 112 |
return temp_file.name
|
| 113 |
|
| 114 |
-
# Inference function
|
| 115 |
def inference(
|
| 116 |
control_image: Image.Image,
|
| 117 |
prompt: str,
|
|
@@ -136,7 +126,7 @@ def inference(
|
|
| 136 |
|
| 137 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 138 |
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
|
| 139 |
-
generator = torch.Generator(
|
| 140 |
|
| 141 |
out = main_pipe(
|
| 142 |
prompt=prompt,
|
|
@@ -169,7 +159,6 @@ def inference(
|
|
| 169 |
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
|
| 170 |
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
|
| 171 |
|
| 172 |
-
# Save image + metadata
|
| 173 |
user_history.save_image(
|
| 174 |
label=prompt,
|
| 175 |
image=out_image["images"][0],
|
|
|
|
| 27 |
|
| 28 |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
|
| 29 |
|
|
|
|
| 30 |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float32)
|
| 31 |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float32)
|
| 32 |
|
|
|
|
| 33 |
SAFETY_CHECKER_ENABLED = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
| 34 |
safety_checker = None
|
| 35 |
feature_extractor = None
|
| 36 |
if SAFETY_CHECKER_ENABLED:
|
| 37 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
| 38 |
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 39 |
|
| 40 |
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
|
|
| 44 |
safety_checker=safety_checker,
|
| 45 |
feature_extractor=feature_extractor,
|
| 46 |
torch_dtype=torch.float32,
|
| 47 |
+
)
|
| 48 |
|
| 49 |
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
|
| 50 |
|
|
|
|
| 51 |
SAMPLER_MAP = {
|
| 52 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
| 53 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
|
|
|
| 55 |
|
| 56 |
def center_crop_resize(img, output_size=(512, 512)):
|
| 57 |
width, height = img.size
|
|
|
|
|
|
|
| 58 |
new_dimension = min(width, height)
|
| 59 |
left = (width - new_dimension)/2
|
| 60 |
top = (height - new_dimension)/2
|
| 61 |
right = (width + new_dimension)/2
|
| 62 |
bottom = (height + new_dimension)/2
|
|
|
|
|
|
|
| 63 |
img = img.crop((left, top, right, bottom))
|
| 64 |
img = img.resize(output_size)
|
|
|
|
| 65 |
return img
|
| 66 |
|
| 67 |
def common_upscale(samples, width, height, upscale_method, crop=False):
|
|
|
|
| 79 |
s = samples[:,:,y:old_height-y,x:old_width-x]
|
| 80 |
else:
|
| 81 |
s = samples
|
|
|
|
| 82 |
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
| 83 |
|
| 84 |
def upscale(samples, upscale_method, scale_by):
|
|
|
|
| 102 |
image.save(temp_file.name)
|
| 103 |
return temp_file.name
|
| 104 |
|
|
|
|
| 105 |
def inference(
|
| 106 |
control_image: Image.Image,
|
| 107 |
prompt: str,
|
|
|
|
| 126 |
|
| 127 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 128 |
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
|
| 129 |
+
generator = torch.Generator().manual_seed(my_seed)
|
| 130 |
|
| 131 |
out = main_pipe(
|
| 132 |
prompt=prompt,
|
|
|
|
| 159 |
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
|
| 160 |
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
|
| 161 |
|
|
|
|
| 162 |
user_history.save_image(
|
| 163 |
label=prompt,
|
| 164 |
image=out_image["images"][0],
|