Spaces:
Runtime error
Runtime error
from glide_text2im.gaussian_diffusion import get_named_beta_schedule | |
from glide_text2im.respace import SpacedDiffusion, space_timesteps | |
from glide_text2im.text2im_model import ( | |
InpaintText2ImUNet, | |
SuperResInpaintText2ImUnet, | |
SuperResText2ImUNet, | |
Text2ImUNet, | |
) | |
from glide_text2im.tokenizer.bpe import get_encoder | |
def model_and_diffusion_defaults(): | |
return dict( | |
image_size=64, | |
num_channels=192, | |
num_res_blocks=3, | |
channel_mult="", | |
num_heads=1, | |
num_head_channels=64, | |
num_heads_upsample=-1, | |
attention_resolutions="32,16,8", | |
dropout=0.1, | |
text_ctx=128, | |
xf_width=512, | |
xf_layers=16, | |
xf_heads=8, | |
xf_final_ln=True, | |
xf_padding=True, | |
diffusion_steps=1000, | |
noise_schedule="squaredcos_cap_v2", | |
timestep_respacing="", | |
use_scale_shift_norm=True, | |
resblock_updown=True, | |
use_fp16=True, | |
cache_text_emb=False, | |
inpaint=False, | |
super_res=False, | |
) | |
def model_and_diffusion_defaults_upsampler(): | |
result = model_and_diffusion_defaults() | |
result.update( | |
dict( | |
image_size=256, | |
num_res_blocks=2, | |
noise_schedule="linear", | |
super_res=True, | |
) | |
) | |
return result | |
def create_model_and_diffusion( | |
image_size, | |
num_channels, | |
num_res_blocks, | |
channel_mult, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
attention_resolutions, | |
dropout, | |
text_ctx, | |
xf_width, | |
xf_layers, | |
xf_heads, | |
xf_final_ln, | |
xf_padding, | |
diffusion_steps, | |
noise_schedule, | |
timestep_respacing, | |
use_scale_shift_norm, | |
resblock_updown, | |
use_fp16, | |
cache_text_emb, | |
inpaint, | |
super_res, | |
): | |
model = create_model( | |
image_size, | |
num_channels, | |
num_res_blocks, | |
channel_mult=channel_mult, | |
attention_resolutions=attention_resolutions, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dropout=dropout, | |
text_ctx=text_ctx, | |
xf_width=xf_width, | |
xf_layers=xf_layers, | |
xf_heads=xf_heads, | |
xf_final_ln=xf_final_ln, | |
xf_padding=xf_padding, | |
resblock_updown=resblock_updown, | |
use_fp16=use_fp16, | |
cache_text_emb=cache_text_emb, | |
inpaint=inpaint, | |
super_res=super_res, | |
) | |
diffusion = create_gaussian_diffusion( | |
steps=diffusion_steps, | |
noise_schedule=noise_schedule, | |
timestep_respacing=timestep_respacing, | |
) | |
return model, diffusion | |
def create_model( | |
image_size, | |
num_channels, | |
num_res_blocks, | |
channel_mult, | |
attention_resolutions, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
use_scale_shift_norm, | |
dropout, | |
text_ctx, | |
xf_width, | |
xf_layers, | |
xf_heads, | |
xf_final_ln, | |
xf_padding, | |
resblock_updown, | |
use_fp16, | |
cache_text_emb, | |
inpaint, | |
super_res, | |
): | |
if channel_mult == "": | |
if image_size == 256: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif image_size == 128: | |
channel_mult = (1, 1, 2, 3, 4) | |
elif image_size == 64: | |
channel_mult = (1, 2, 3, 4) | |
else: | |
raise ValueError(f"unsupported image size: {image_size}") | |
else: | |
channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(",")) | |
assert 2 ** (len(channel_mult) + 2) == image_size | |
attention_ds = [] | |
for res in attention_resolutions.split(","): | |
attention_ds.append(image_size // int(res)) | |
if inpaint and super_res: | |
model_cls = SuperResInpaintText2ImUnet | |
elif inpaint: | |
model_cls = InpaintText2ImUNet | |
elif super_res: | |
model_cls = SuperResText2ImUNet | |
else: | |
model_cls = Text2ImUNet | |
return model_cls( | |
text_ctx=text_ctx, | |
xf_width=xf_width, | |
xf_layers=xf_layers, | |
xf_heads=xf_heads, | |
xf_final_ln=xf_final_ln, | |
tokenizer=get_encoder(), | |
xf_padding=xf_padding, | |
in_channels=3, | |
model_channels=num_channels, | |
out_channels=6, | |
num_res_blocks=num_res_blocks, | |
attention_resolutions=tuple(attention_ds), | |
dropout=dropout, | |
channel_mult=channel_mult, | |
use_fp16=use_fp16, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
resblock_updown=resblock_updown, | |
cache_text_emb=cache_text_emb, | |
) | |
def create_gaussian_diffusion( | |
steps, | |
noise_schedule, | |
timestep_respacing, | |
): | |
betas = get_named_beta_schedule(noise_schedule, steps) | |
if not timestep_respacing: | |
timestep_respacing = [steps] | |
return SpacedDiffusion( | |
use_timesteps=space_timesteps(steps, timestep_respacing), | |
betas=betas, | |
) | |