Spaces:
Build error
Build error
""" | |
Mostly copy-paste from DINO and timm library: | |
https://github.com/facebookresearch/dino | |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
""" | |
import warnings | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import trunc_normal_, drop_path, to_2tuple | |
from functools import partial | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', | |
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), | |
**kwargs | |
} | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return 'p={}'.format(self.drop_prob) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, | |
C // self.num_heads).permute(2, 0, 3, 1, 4) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.window_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.num_patches_w, self.num_patches_h = self.window_size | |
self.num_patches = self.window_size[0] * self.window_size[1] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.proj = nn.Conv2d(in_chans, embed_dim, | |
kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
x = self.proj(x) | |
return x | |
class HybridEmbed(nn.Module): | |
""" CNN Feature Map Embedding | |
Extract feature map from CNN, flatten, project to embedding dim. | |
""" | |
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): | |
super().__init__() | |
assert isinstance(backbone, nn.Module) | |
img_size = to_2tuple(img_size) | |
self.img_size = img_size | |
self.backbone = backbone | |
if feature_size is None: | |
with torch.no_grad(): | |
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature | |
# map for all networks, the feature metadata has reliable channel and stride info, but using | |
# stride to calc feature dim requires info about padding of each stage that isn't captured. | |
training = backbone.training | |
if training: | |
backbone.eval() | |
o = self.backbone(torch.zeros( | |
1, in_chans, img_size[0], img_size[1]))[-1] | |
feature_size = o.shape[-2:] | |
feature_dim = o.shape[1] | |
backbone.train(training) | |
else: | |
feature_size = to_2tuple(feature_size) | |
feature_dim = self.backbone.feature_info.channels()[-1] | |
self.num_patches = feature_size[0] * feature_size[1] | |
self.proj = nn.Linear(feature_dim, embed_dim) | |
def forward(self, x): | |
x = self.backbone(x)[-1] | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class ViT(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, | |
model_name='vit_base_patch16_224', | |
img_size=384, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
num_classes=19, | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0.1, | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
hybrid_backbone=None, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
norm_cfg=None, | |
pos_embed_interp=False, | |
random_init=False, | |
align_corners=False, | |
use_checkpoint=False, | |
num_extra_tokens=1, | |
out_features=None, | |
**kwargs, | |
): | |
super(ViT, self).__init__() | |
self.model_name = model_name | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.depth = depth | |
self.num_heads = num_heads | |
self.num_classes = num_classes | |
self.mlp_ratio = mlp_ratio | |
self.qkv_bias = qkv_bias | |
self.qk_scale = qk_scale | |
self.drop_rate = drop_rate | |
self.attn_drop_rate = attn_drop_rate | |
self.drop_path_rate = drop_path_rate | |
self.hybrid_backbone = hybrid_backbone | |
self.norm_layer = norm_layer | |
self.norm_cfg = norm_cfg | |
self.pos_embed_interp = pos_embed_interp | |
self.random_init = random_init | |
self.align_corners = align_corners | |
self.use_checkpoint = use_checkpoint | |
self.num_extra_tokens = num_extra_tokens | |
self.out_features = out_features | |
self.out_indices = [int(name[5:]) for name in out_features] | |
# self.num_stages = self.depth | |
# self.out_indices = tuple(range(self.num_stages)) | |
if self.hybrid_backbone is not None: | |
self.patch_embed = HybridEmbed( | |
self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim) | |
else: | |
self.patch_embed = PatchEmbed( | |
img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim) | |
self.num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) | |
if self.num_extra_tokens == 2: | |
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros( | |
1, self.num_patches + self.num_extra_tokens, self.embed_dim)) | |
self.pos_drop = nn.Dropout(p=self.drop_rate) | |
# self.num_extra_tokens = self.pos_embed.shape[-2] - self.num_patches | |
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, | |
self.depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, | |
qk_scale=self.qk_scale, | |
drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer) | |
for i in range(self.depth)]) | |
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here | |
# self.repr = nn.Linear(embed_dim, representation_size) | |
# self.repr_act = nn.Tanh() | |
if patch_size == 16: | |
self.fpn1 = nn.Sequential( | |
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), | |
nn.SyncBatchNorm(embed_dim), | |
nn.GELU(), | |
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), | |
) | |
self.fpn2 = nn.Sequential( | |
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), | |
) | |
self.fpn3 = nn.Identity() | |
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) | |
elif patch_size == 8: | |
self.fpn1 = nn.Sequential( | |
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), | |
) | |
self.fpn2 = nn.Identity() | |
self.fpn3 = nn.Sequential( | |
nn.MaxPool2d(kernel_size=2, stride=2), | |
) | |
self.fpn4 = nn.Sequential( | |
nn.MaxPool2d(kernel_size=4, stride=4), | |
) | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
if self.num_extra_tokens==2: | |
trunc_normal_(self.dist_token, std=0.2) | |
self.apply(self._init_weights) | |
# self.fix_init_weight() | |
def fix_init_weight(self): | |
def rescale(param, layer_id): | |
param.div_(math.sqrt(2.0 * layer_id)) | |
for layer_id, layer in enumerate(self.blocks): | |
rescale(layer.attn.proj.weight.data, layer_id + 1) | |
rescale(layer.mlp.fc2.weight.data, layer_id + 1) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
''' | |
def init_weights(self): | |
logger = get_root_logger() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
if self.init_cfg is None: | |
logger.warn(f'No pre-trained weights for ' | |
f'{self.__class__.__name__}, ' | |
f'training start from scratch') | |
else: | |
assert 'checkpoint' in self.init_cfg, f'Only support ' \ | |
f'specify `Pretrained` in ' \ | |
f'`init_cfg` in ' \ | |
f'{self.__class__.__name__} ' | |
logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") | |
load_checkpoint(self, filename=self.init_cfg['checkpoint'], strict=False, logger=logger) | |
''' | |
def get_num_layers(self): | |
return len(self.blocks) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def _conv_filter(self, state_dict, patch_size=16): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k: | |
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | |
out_dict[k] = v | |
return out_dict | |
def to_2D(self, x): | |
n, hw, c = x.shape | |
h = w = int(math.sqrt(hw)) | |
x = x.transpose(1, 2).reshape(n, c, h, w) | |
return x | |
def to_1D(self, x): | |
n, c, h, w = x.shape | |
x = x.reshape(n, c, -1).transpose(1, 2) | |
return x | |
def interpolate_pos_encoding(self, x, w, h): | |
npatch = x.shape[1] - self.num_extra_tokens | |
N = self.pos_embed.shape[1] - self.num_extra_tokens | |
if npatch == N and w == h: | |
return self.pos_embed | |
class_ORdist_pos_embed = self.pos_embed[:, 0:self.num_extra_tokens] | |
patch_pos_embed = self.pos_embed[:, self.num_extra_tokens:] | |
dim = x.shape[-1] | |
w0 = w // self.patch_embed.patch_size[0] | |
h0 = h // self.patch_embed.patch_size[1] | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
w0, h0 = w0 + 0.1, h0 + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), | |
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), | |
mode='bicubic', | |
) | |
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_ORdist_pos_embed, patch_pos_embed), dim=1) | |
def prepare_tokens(self, x, mask=None): | |
B, nc, w, h = x.shape | |
# patch linear embedding | |
x = self.patch_embed(x) | |
# mask image modeling | |
if mask is not None: | |
x = self.mask_model(x, mask) | |
x = x.flatten(2).transpose(1, 2) | |
# add the [CLS] token to the embed patch tokens | |
all_tokens = [self.cls_token.expand(B, -1, -1)] | |
if self.num_extra_tokens == 2: | |
dist_tokens = self.dist_token.expand(B, -1, -1) | |
all_tokens.append(dist_tokens) | |
all_tokens.append(x) | |
x = torch.cat(all_tokens, dim=1) | |
# add positional encoding to each token | |
x = x + self.interpolate_pos_encoding(x, w, h) | |
return self.pos_drop(x) | |
def forward_features(self, x): | |
# print(f"==========shape of x is {x.shape}==========") | |
B, _, H, W = x.shape | |
Hp, Wp = H // self.patch_size, W // self.patch_size | |
x = self.prepare_tokens(x) | |
features = [] | |
for i, blk in enumerate(self.blocks): | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if i in self.out_indices: | |
xp = x[:, self.num_extra_tokens:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) | |
features.append(xp.contiguous()) | |
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] | |
for i in range(len(features)): | |
features[i] = ops[i](features[i]) | |
feat_out = {} | |
for name, value in zip(self.out_features, features): | |
feat_out[name] = value | |
return feat_out | |
def forward(self, x): | |
x = self.forward_features(x) | |
return x | |
def deit_base_patch16(pretrained=False, **kwargs): | |
model = ViT( | |
patch_size=16, | |
drop_rate=0., | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
num_classes=1000, | |
mlp_ratio=4., | |
qkv_bias=True, | |
use_checkpoint=True, | |
num_extra_tokens=2, | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def mae_base_patch16(pretrained=False, **kwargs): | |
model = ViT( | |
patch_size=16, | |
drop_rate=0., | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
num_classes=1000, | |
mlp_ratio=4., | |
qkv_bias=True, | |
use_checkpoint=True, | |
num_extra_tokens=1, | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model |