Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import glob | |
import numpy as np | |
import imageio | |
from MiDaS.MiDaS_utils import write_depth | |
BOOST_BASE = 'BoostingMonocularDepth' | |
BOOST_INPUTS = 'inputs' | |
BOOST_OUTPUTS = 'outputs' | |
def run_boostmonodepth(img_names, src_folder, depth_folder): | |
if not isinstance(img_names, list): | |
img_names = [img_names] | |
# remove irrelevant files first | |
clean_folder(os.path.join(BOOST_BASE, BOOST_INPUTS)) | |
clean_folder(os.path.join(BOOST_BASE, BOOST_OUTPUTS)) | |
tgt_names = [] | |
for img_name in img_names: | |
base_name = os.path.basename(img_name) | |
tgt_name = os.path.join(BOOST_BASE, BOOST_INPUTS, base_name) | |
os.system(f'cp {img_name} {tgt_name}') | |
# keep only the file name here. | |
# they save all depth as .png file | |
tgt_names.append(os.path.basename(tgt_name).replace('.jpg', '.png')) | |
os.system(f'cd {BOOST_BASE} && python run.py --Final --data_dir {BOOST_INPUTS}/ --output_dir {BOOST_OUTPUTS} --depthNet 0') | |
for i, (img_name, tgt_name) in enumerate(zip(img_names, tgt_names)): | |
img = imageio.imread(img_name) | |
H, W = img.shape[:2] | |
scale = 640. / max(H, W) | |
# resize and save depth | |
target_height, target_width = int(round(H * scale)), int(round(W * scale)) | |
depth = imageio.imread(os.path.join(BOOST_BASE, BOOST_OUTPUTS, tgt_name)) | |
depth = np.array(depth).astype(np.float32) | |
depth = resize_depth(depth, target_width, target_height) | |
np.save(os.path.join(depth_folder, tgt_name.replace('.png', '.npy')), depth / 32768. - 1.) | |
write_depth(os.path.join(depth_folder, tgt_name.replace('.png', '')), depth) | |
def clean_folder(folder, img_exts=['.png', '.jpg', '.npy']): | |
for img_ext in img_exts: | |
paths_to_check = os.path.join(folder, f'*{img_ext}') | |
if len(glob.glob(paths_to_check)) == 0: | |
continue | |
print(paths_to_check) | |
os.system(f'rm {paths_to_check}') | |
def resize_depth(depth, width, height): | |
"""Resize numpy (or image read by imageio) depth map | |
Args: | |
depth (numpy): depth | |
width (int): image width | |
height (int): image height | |
Returns: | |
array: processed depth | |
""" | |
depth = cv2.blur(depth, (3, 3)) | |
return cv2.resize(depth, (width, height), interpolation=cv2.INTER_AREA) | |