Spaces:
Runtime error
Runtime error
paulmondon
commited on
Commit
·
a72c3ec
1
Parent(s):
ff87713
Add requirements.txt
Browse files- app.py +45 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image, ImageDraw
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import requests
|
| 6 |
+
import random
|
| 7 |
+
|
| 8 |
+
def detect_objects(image):
|
| 9 |
+
# Load the pre-trained DETR model
|
| 10 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 11 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
| 12 |
+
|
| 13 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 14 |
+
outputs = model(**inputs)
|
| 15 |
+
|
| 16 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
| 17 |
+
# let's only keep detections with score > 0.9
|
| 18 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
| 19 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
| 20 |
+
|
| 21 |
+
# Draw bounding boxes and labels on the image
|
| 22 |
+
draw = ImageDraw.Draw(image)
|
| 23 |
+
for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
|
| 24 |
+
box = [round(i, 2) for i in box.tolist()]
|
| 25 |
+
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
| 26 |
+
draw.rectangle(box, outline=color, width=3)
|
| 27 |
+
draw.text((box[0], box[1]), model.config.id2label[label.item()], fill=color)
|
| 28 |
+
|
| 29 |
+
return image
|
| 30 |
+
|
| 31 |
+
def upload_image(file):
|
| 32 |
+
image = Image.open(file.name)
|
| 33 |
+
image_with_boxes = detect_objects(image)
|
| 34 |
+
return image_with_boxes
|
| 35 |
+
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
fn=upload_image,
|
| 38 |
+
inputs="file",
|
| 39 |
+
outputs="image",
|
| 40 |
+
title="Object Detection",
|
| 41 |
+
description="Upload an image and detect objects using DETR model.",
|
| 42 |
+
allow_flagging=False
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==2.2.14
|
| 2 |
+
torch==1.2.0
|
| 3 |
+
transformers==4.14.3
|
| 4 |
+
Pillow==9.0.1
|