Spaces:
Runtime error
Runtime error
import os | |
os.system('git clone --recursive https://github.com/dmlc/xgboost') | |
os.system('cd xgboost') | |
os.system('sudo cp make/minimum.mk ./config.mk;') | |
os.system('sudo make -j4;') | |
os.system('sh build.sh') | |
os.system('cd python-package') | |
os.system('python setup.py install') | |
os.system('pip install graphviz') | |
os.system('pip install python-pydot') | |
os.system('pip install python-pydot-ng') | |
os.system('pip install -U scikit-learn scipy matplotlib') | |
os.system('pip install wandb --upgrade') | |
os.system('pip install tensorboardX --upgrade') | |
os.system('pip install ipython --upgrade') | |
os.system('wandb login 5a0e81f39777351977ce52cf57ea09c4f48f3d93 --relogin') | |
from collections import namedtuple | |
import altair as alt | |
import math | |
import streamlit as st | |
import pandas | |
import numpy | |
import xgboost | |
import graphviz | |
from sklearn.metrics import mean_squared_error | |
from sklearn.model_selection import train_test_split | |
import matplotlib.pyplot | |
os.system('load_ext tensorboard') | |
import os | |
import datetime | |
from tensorboardX import SummaryWriter | |
import wandb | |
from wandb.xgboost import wandb_callback | |
wandb.init(project="australian_rain", entity="epitech1") | |
""" | |
# MLOPS | |
""" | |
max_depth_input = st.slider("Max depth", 1, 100, 5) | |
colsample_bytree_input = st.slider("Colsample bytree", 0.0, 1.0, 0.5) | |
learning_rate_input = st.slider("Learning rate", 0.0, 1.0, 0.2) | |
alpha_input = st.slider("Alpha", 1, 100, 10) | |
n_estimators_input = st.slider("n estimators", 1, 100, 20) | |
city_input = st.selectbox( | |
'Which city do you want to predict rain ?', | |
("Canberra", | |
"Albury", | |
"Penrith", | |
"Sydney", | |
"MountGinini", | |
"Bendigo", | |
"Brisbane", | |
"Portland"), index=0) | |
dataset = pandas.read_csv('weatherAUS.csv') | |
location_dataset = dataset["Location"].unique() | |
wind_dataset = dataset["WindGustDir"].unique() | |
date_dataset = dataset["Date"].unique() | |
dataset.drop(dataset.loc[dataset['Location'] != city_input].index, inplace=True) | |
i_RainTomorrow = dataset.columns.get_loc("RainTomorrow") | |
#i_Location = dataset.columns.get_loc("Location") | |
i_WindGustDir = dataset.columns.get_loc("WindGustDir") | |
i_Date = dataset.columns.get_loc("Date") | |
yes = dataset.iat[8, dataset.columns.get_loc("RainTomorrow")] | |
no = dataset.iat[0, dataset.columns.get_loc("RainTomorrow")] | |
for i in range(len(dataset)): | |
if (dataset.iat[i, i_RainTomorrow] == yes): | |
dataset.iat[i, i_RainTomorrow] = True | |
else: | |
dataset.iat[i, i_RainTomorrow] = False | |
#dataset.iat[i, i_Location] = numpy.where(location_dataset == dataset.iat[i, i_Location])[0][0] | |
if (pandas.isna(dataset.iat[i, i_WindGustDir])): | |
dataset.iat[i, i_WindGustDir] = 0 | |
else: | |
dataset.iat[i, i_WindGustDir] = numpy.where(wind_dataset == dataset.iat[i, i_WindGustDir])[0][0] + 1 | |
dataset.iat[i, i_Date] = numpy.where(date_dataset == dataset.iat[i, i_Date])[0][0] | |
dataset = dataset.astype({'RainTomorrow': 'bool'}) | |
#dataset = dataset.astype({'Location': 'int'}) | |
dataset = dataset.astype({'WindGustDir': 'int'}) | |
dataset = dataset.astype({'Date': 'int'}) | |
dataset.drop(columns=["WindDir9am", "WindDir3pm", "WindSpeed9am", "WindSpeed3pm", "Temp9am", "Temp3pm", "RainToday"], inplace=True) | |
dataset.drop(dataset.index[dataset.isnull().any(axis=1)], 0, inplace=True) | |
dataset["Humidity"] = 0.0 | |
dataset["Pressure"] = 0.0 | |
dataset["Cloud"] = 0.0 | |
for i in dataset.index: | |
humidity = (dataset["Humidity9am"][i] + dataset["Humidity3pm"][i]) / 2 | |
dataset.at[i, "Humidity"] = humidity | |
pressure = (dataset["Pressure9am"][i] + dataset["Pressure3pm"][i]) / 2 | |
dataset.at[i, "Pressure"] = pressure | |
cloud = (dataset["Cloud9am"][i] + dataset["Cloud3pm"][i]) / 2 | |
dataset.at[i, "Cloud"] = cloud | |
dataset.drop(columns=["Humidity9am", "Humidity3pm", "Pressure9am", "Pressure3pm", "Cloud9am", "Cloud3pm"], inplace=True) | |
x, y = dataset.iloc[:,[False, False, True, True, False, True, True, True, True, True, True, True, True]],dataset.iloc[:,4] | |
data_dmatrix = xgboost.DMatrix(data=x,label=y) | |
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=123) | |
class TensorBoardCallback(xgboost.callback.TrainingCallback): | |
def __init__(self, experiment: str = None, data_name: str = None): | |
self.experiment = experiment or "logs" | |
self.data_name = data_name or "test" | |
self.datetime_ = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") | |
self.log_dir = f"runs/{self.experiment}/{self.datetime_}" | |
self.train_writer = SummaryWriter(log_dir=os.path.join(self.log_dir, "train/")) | |
if self.data_name: | |
self.test_writer = SummaryWriter(log_dir=os.path.join(self.log_dir, f"{self.data_name}/")) | |
def after_iteration( | |
self, model, epoch: int, evals_log: xgboost.callback.TrainingCallback.EvalsLog | |
) -> bool: | |
if not evals_log: | |
return False | |
for data, metric in evals_log.items(): | |
for metric_name, log in metric.items(): | |
score = log[-1][0] if isinstance(log[-1], tuple) else log[-1] | |
if data == "train": | |
self.train_writer.add_scalar(metric_name, score, epoch) | |
else: | |
self.test_writer.add_scalar(metric_name, score, epoch) | |
return False | |
xg_reg = xgboost.XGBRegressor(colsample_bytree = colsample_bytree_input, learning_rate = learning_rate_input, max_depth = max_depth_input, alpha = alpha_input, n_estimators = n_estimators_input, eval_metric = ['rmse', 'error', 'logloss', 'map'], | |
callbacks=[TensorBoardCallback(experiment='exp_1', data_name='test')]) | |
xg_reg.fit(X_train,y_train, eval_set=[(X_train, y_train)]) | |
preds = xg_reg.predict(X_test) | |
rmse = numpy.sqrt(mean_squared_error(y_test, preds)) | |
st.write("RMSE: %f" % (rmse)) | |
params = {'colsample_bytree': colsample_bytree_input,'learning_rate': learning_rate_input, | |
'max_depth': max_depth_input, 'alpha': alpha_input} | |
cv_results = xgboost.cv(dtrain=data_dmatrix, params=params, nfold=3, | |
num_boost_round=50,early_stopping_rounds=10,metrics="rmse", as_pandas=True, seed=123) | |
st.write((cv_results["test-rmse-mean"]).tail(1)) | |
xg_reg = xgboost.train(params=params, dtrain=data_dmatrix, num_boost_round=10) | |
os.system('tensorboard --logdir runs') | |
#xgboost.plot_tree(xg_reg,num_trees=0) | |
#matplotlib.pyplot.rcParams['figure.figsize'] = [200, 200] | |
#matplotlib.pyplot.show() | |
#xgboost.plot_importance(xg_reg) | |
#matplotlib.pyplot.rcParams['figure.figsize'] = [5, 5] | |
#matplotlib.pyplot.show() | |
#xg_reg = xgboost.train(params=params, dtrain=data_dmatrix, num_boost_round=10, callbacks=[wandb_callback()]) | |
# MLOPS - W&B analytics | |
# added the wandb to the callbacks | |