IOT_temperature / streamlit_app.py
Kolpitor's picture
Upload streamlit_app.py
193855f
raw
history blame
2.96 kB
import os
os.system('pip install pdpbox==0.2.1')
from pdpbox.pdp import pdp_isolate, pdp_plot
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest
from sklearn.ensemble import RandomForestRegressor
import pandas as pd
from numpy import mean
import streamlit as st
"""
# IOT
"""
max_depth_input = st.slider("Max depth", 1, 100, 5)
colsample_bytree_input = st.slider("Colsample bytree", 0.0, 1.0, 0.5)
learning_rate_input = st.slider("Learning rate", 0.0, 1.0, 0.2)
alpha_input = st.slider("Alpha", 1, 100, 10)
n_estimators_input = st.slider("n estimators", 1, 100, 20)
city_input = st.selectbox(
'Which city do you want to predict rain ?',
("Canberra",
"Albury",
"Penrith",
"Sydney",
"MountGinini",
"Bendigo",
"Brisbane",
"Portland"), index=0)
df = pd.read_csv("city_temperature.csv")
def mergeStateToCountry():
df.loc[df['State'].notna(), 'Country'] = df['State']
df = df.loc[:, ~df.columns.str.contains('State')]
i = 0
for region in df["Region"].unique():
df["Region"] = df["Region"].replace(region, str(i))
i += 1
i = 0
for country in df["Country"].unique():
df["Country"] = df["Country"].replace(country, str(i))
i += 1
i = 0
for state in df["State"].unique():
df["State"] = df["State"].replace(state, str(i))
i += 1
i = 0
for city in df["City"].unique():
df["City"] = df["City"].replace(city, str(i))
i += 1
df = df.astype({"Region": "int"})
df = df.astype({"Country": "int"})
df = df.astype({"State": "int"})
df = df.astype({"City": "int"})
target = 'AvgTemperature'
# Here Y would be our target
Y = df[target]
# Here X would contain the other column
#X = df.loc[:, df.columns != target]
X = df[['Month', 'Day', 'Year']]
X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size=0.25, random_state=42)
y_pred = [Y_train.mean()] * len(Y_train)
st.write('Baseline MAE: %f' % (round(mean_absolute_error(Y_train, y_pred), 5)))
lm = make_pipeline(StandardScaler(), LinearRegression(),)
lm.fit(X_train, Y_train)
st.write('Linear Regression Training MAE: %f' % (round(mean_absolute_error(Y_train, lm.predict(X_train)), 5)))
st.write('Linear Regression Test MAE: %f' % (round(mean_absolute_error(Y_val, lm.predict(X_val)), 5)))
forestModel = make_pipeline(
SelectKBest(k="all"),
StandardScaler(),
RandomForestRegressor(
n_estimators=100,
max_depth=50,
random_state=77,
n_jobs=-1))
forestModel.fit (X_train, Y_train)
st.write('Random Forest Regressor Model Training MAE: %f' % (mean_absolute_error(Y_train, forestModel.predict(X_train))))
st.write('Random Forest Regressor Model Test MAE: %f' % (mean_absolute_error(Y_val, forestModel.predict(X_val))))