|
import streamlit as st |
|
import pandas as pd |
|
import sklearn |
|
import pickle |
|
|
|
loaded_model = pickle.load(open("finalized_model.sav", 'rb')) |
|
|
|
|
|
def main(): |
|
st.image('img.jpg') |
|
st.title("βοΈπ© Engine prediction βοΈπ©") |
|
st.warning("Our Machine Learning algorithm predicts whether the elements of a machine work consistently\n\n") |
|
|
|
with st.form(key='columns_in_form'): |
|
c1, c2, c3 = st.columns(3) |
|
with c1: |
|
airTemperature = st.slider("Air temperature [K]", 0, 1500, 750) |
|
with c2: |
|
processTemperatire = st.slider( |
|
"Process temperature [K]", 0, 1500, 750) |
|
with c3: |
|
rotationSpeed = st.slider( |
|
"Rotational speed [rpm]", 0, 1500, 750) |
|
submitButton1 = st.form_submit_button(label='Save') |
|
with st.form(key='columns_in_form2'): |
|
c1, c2, c3, c4 = st.columns(4) |
|
with c1: |
|
toolWear = st.slider("Tool wear [min]", 0, 1500, 750) |
|
with c2: |
|
typeL = st.select_slider('Type_L', options=[0, 1]) |
|
with c3: |
|
typeM = st.select_slider('Type_M', options=[0, 1]) |
|
with c4: |
|
torqueNm = st.slider('Torque [Nm]', 0,300,150) |
|
submitButton2 = st.form_submit_button(label='Calculate') |
|
if (submitButton2): |
|
d = {'Air temperature [K]': airTemperature, 'Process temperature [K]': processTemperatire, |
|
'Rotational speed [rpm]': rotationSpeed, "Torque [Nm]": torqueNm, "Tool wear [min]": toolWear, "Type_L": typeL, "Type_M": typeM} |
|
ser = pd.Series(data=d, index=['Air temperature [K]', 'Process temperature [K]', |
|
'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Type_L', 'Type_M']) |
|
|
|
res = loaded_model.predict([ser]) |
|
if (res[0] == 0): |
|
st.success("The machine is in good condition") |
|
else: |
|
st.error("The machine seems to have problems") |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|