Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,19 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# --- Configuration ---
|
| 7 |
-
# ON UTILISE LE MODÈLE DEEPSEEK CODER 1.3B INSTRUCT
|
| 8 |
MODEL_ID = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
| 9 |
DEVICE = "cpu"
|
| 10 |
|
| 11 |
# --- Chargement du modèle et du tokenizer ---
|
| 12 |
-
# Cette étape peut prendre quelques minutes au premier démarrage du Space
|
| 13 |
print(f"Début du chargement du modèle : {MODEL_ID}")
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
MODEL_ID,
|
| 16 |
-
torch_dtype=torch.bfloat16,
|
| 17 |
device_map=DEVICE
|
| 18 |
)
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
@@ -22,33 +22,64 @@ print("Modèle et tokenizer chargés avec succès sur le CPU.")
|
|
| 22 |
# --- Création de l'application API ---
|
| 23 |
app = FastAPI()
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
class
|
| 27 |
-
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
"""
|
| 34 |
-
Endpoint
|
| 35 |
"""
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
# Génération
|
| 45 |
-
outputs = model.generate(inputs, max_new_tokens=request.
|
| 46 |
|
| 47 |
-
# Décodage
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
return
|
| 51 |
|
| 52 |
@app.get("/")
|
| 53 |
def root():
|
| 54 |
-
return {"status": "API en ligne", "model_id": MODEL_ID
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
from pydantic import BaseModel
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
import time
|
| 6 |
+
import uuid
|
| 7 |
|
| 8 |
# --- Configuration ---
|
|
|
|
| 9 |
MODEL_ID = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
| 10 |
DEVICE = "cpu"
|
| 11 |
|
| 12 |
# --- Chargement du modèle et du tokenizer ---
|
|
|
|
| 13 |
print(f"Début du chargement du modèle : {MODEL_ID}")
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
MODEL_ID,
|
| 16 |
+
torch_dtype=torch.bfloat16,
|
| 17 |
device_map=DEVICE
|
| 18 |
)
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
|
| 22 |
# --- Création de l'application API ---
|
| 23 |
app = FastAPI()
|
| 24 |
|
| 25 |
+
# --- Modèles de données pour la compatibilité OpenAI ---
|
| 26 |
+
class ChatMessage(BaseModel):
|
| 27 |
+
role: str
|
| 28 |
+
content: str
|
| 29 |
|
| 30 |
+
class ChatCompletionRequest(BaseModel):
|
| 31 |
+
model: str
|
| 32 |
+
messages: list[ChatMessage]
|
| 33 |
+
max_tokens: int = 250
|
| 34 |
+
|
| 35 |
+
class ChatCompletionResponseChoice(BaseModel):
|
| 36 |
+
index: int = 0
|
| 37 |
+
message: ChatMessage
|
| 38 |
+
finish_reason: str = "stop"
|
| 39 |
+
|
| 40 |
+
class ChatCompletionResponse(BaseModel):
|
| 41 |
+
id: str
|
| 42 |
+
object: str = "chat.completion"
|
| 43 |
+
created: int
|
| 44 |
+
model: str
|
| 45 |
+
choices: list[ChatCompletionResponseChoice]
|
| 46 |
+
|
| 47 |
+
# --- Définition de l'API compatible OpenAI ---
|
| 48 |
+
@app.post("/v1/chat/completions")
|
| 49 |
+
async def create_chat_completion(request: ChatCompletionRequest):
|
| 50 |
"""
|
| 51 |
+
Endpoint compatible avec l'API OpenAI Chat Completions.
|
| 52 |
"""
|
| 53 |
+
# Extraire le dernier message utilisateur pour le prompt
|
| 54 |
+
user_prompt = ""
|
| 55 |
+
if request.messages and request.messages[-1].role == "user":
|
| 56 |
+
user_prompt = request.messages[-1].content
|
| 57 |
|
| 58 |
+
if not user_prompt:
|
| 59 |
+
return {"error": "No user prompt found"}
|
| 60 |
+
|
| 61 |
+
# Préparation des inputs pour le modèle DeepSeek
|
| 62 |
+
messages_for_model = [{'role': 'user', 'content': user_prompt}]
|
| 63 |
+
inputs = tokenizer.apply_chat_template(messages_for_model, add_generation_prompt=True, return_tensors="pt").to(DEVICE)
|
| 64 |
|
| 65 |
+
# Génération
|
| 66 |
+
outputs = model.generate(inputs, max_new_tokens=request.max_tokens, do_sample=True, temperature=0.2, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
| 67 |
|
| 68 |
+
# Décodage
|
| 69 |
+
response_text = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
| 70 |
+
|
| 71 |
+
# Formatage de la réponse au format OpenAI
|
| 72 |
+
response_message = ChatMessage(role="assistant", content=response_text)
|
| 73 |
+
choice = ChatCompletionResponseChoice(message=response_message)
|
| 74 |
+
completion_response = ChatCompletionResponse(
|
| 75 |
+
id=f"chatcmpl-{uuid.uuid4()}",
|
| 76 |
+
created=int(time.time()),
|
| 77 |
+
model=request.model,
|
| 78 |
+
choices=[choice]
|
| 79 |
+
)
|
| 80 |
|
| 81 |
+
return completion_response
|
| 82 |
|
| 83 |
@app.get("/")
|
| 84 |
def root():
|
| 85 |
+
return {"status": "API compatible OpenAI en ligne", "model_id": MODEL_ID}
|