Petita commited on
Commit
372e568
1 Parent(s): c5a9897

Upload whisper_online module and demo.wav

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. demo.wav +3 -0
  3. whisper_online.py +740 -0
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ demo.wav filter=lfs diff=lfs merge=lfs -text
demo.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9eb3ce675366cb216fa8f4033842e913b65df0d1897b14ec2f78ea54fedcb5a
3
+ size 1474638
whisper_online.py ADDED
@@ -0,0 +1,740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import sys
3
+ import numpy as np
4
+ import librosa
5
+ from functools import lru_cache
6
+ import time
7
+ import logging
8
+
9
+
10
+ import io
11
+ import soundfile as sf
12
+ import math
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+ @lru_cache
17
+ def load_audio(fname):
18
+ a, _ = librosa.load(fname, sr=16000, dtype=np.float32)
19
+ return a
20
+
21
+ def load_audio_chunk(fname, beg, end):
22
+ audio = load_audio(fname)
23
+ beg_s = int(beg*16000)
24
+ end_s = int(end*16000)
25
+ return audio[beg_s:end_s]
26
+
27
+
28
+ # Whisper backend
29
+
30
+ class ASRBase:
31
+
32
+ sep = " " # join transcribe words with this character (" " for whisper_timestamped,
33
+ # "" for faster-whisper because it emits the spaces when neeeded)
34
+
35
+ def __init__(self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr):
36
+ self.logfile = logfile
37
+
38
+ self.transcribe_kargs = {}
39
+ if lan == "auto":
40
+ self.original_language = None
41
+ else:
42
+ self.original_language = lan
43
+
44
+ print("Loading Whisper model for", lan, "...")
45
+ self.model = self.load_model(modelsize, cache_dir, model_dir)
46
+ print("Loaded Whisper model.")
47
+
48
+
49
+ def load_model(self, modelsize, cache_dir):
50
+ raise NotImplemented("must be implemented in the child class")
51
+
52
+ def transcribe(self, audio, init_prompt=""):
53
+ raise NotImplemented("must be implemented in the child class")
54
+
55
+ def use_vad(self):
56
+ raise NotImplemented("must be implemented in the child class")
57
+
58
+
59
+ class WhisperTimestampedASR(ASRBase):
60
+ """Uses whisper_timestamped library as the backend. Initially, we tested the code on this backend. It worked, but slower than faster-whisper.
61
+ On the other hand, the installation for GPU could be easier.
62
+ """
63
+
64
+ sep = " "
65
+
66
+ def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
67
+ import whisper
68
+ import whisper_timestamped
69
+ from whisper_timestamped import transcribe_timestamped
70
+ self.transcribe_timestamped = transcribe_timestamped
71
+ if model_dir is not None:
72
+ logger.debug("ignoring model_dir, not implemented")
73
+ return whisper.load_model(modelsize, download_root=cache_dir)
74
+
75
+ def transcribe(self, audio, init_prompt=""):
76
+ result = self.transcribe_timestamped(self.model,
77
+ audio, language=self.original_language,
78
+ initial_prompt=init_prompt, verbose=None,
79
+ condition_on_previous_text=True, **self.transcribe_kargs)
80
+ return result
81
+
82
+ def ts_words(self,r):
83
+ # return: transcribe result object to [(beg,end,"word1"), ...]
84
+ o = []
85
+ for s in r["segments"]:
86
+ for w in s["words"]:
87
+ t = (w["start"],w["end"],w["text"])
88
+ o.append(t)
89
+ return o
90
+
91
+ def segments_end_ts(self, res):
92
+ return [s["end"] for s in res["segments"]]
93
+
94
+ def use_vad(self):
95
+ self.transcribe_kargs["vad"] = True
96
+
97
+ def set_translate_task(self):
98
+ self.transcribe_kargs["task"] = "translate"
99
+
100
+
101
+
102
+
103
+ class FasterWhisperASR(ASRBase):
104
+ """Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version.
105
+ """
106
+
107
+ sep = ""
108
+
109
+ def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
110
+ from faster_whisper import WhisperModel
111
+ # logging.getLogger("faster_whisper").setLevel(logger.level)
112
+ if model_dir is not None:
113
+ logger.debug(f"Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used.")
114
+ model_size_or_path = model_dir
115
+ elif modelsize is not None:
116
+ model_size_or_path = modelsize
117
+ else:
118
+ raise ValueError("modelsize or model_dir parameter must be set")
119
+
120
+
121
+ # this worked fast and reliably on NVIDIA L40
122
+ model = WhisperModel(model_size_or_path, device="cuda", compute_type="float16", download_root=cache_dir)
123
+
124
+ # or run on GPU with INT8
125
+ # tested: the transcripts were different, probably worse than with FP16, and it was slightly (appx 20%) slower
126
+ #model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
127
+
128
+ # or run on CPU with INT8
129
+ # tested: works, but slow, appx 10-times than cuda FP16
130
+ # model = WhisperModel(modelsize, device="cpu", compute_type="int8") #, download_root="faster-disk-cache-dir/")
131
+ return model
132
+
133
+ def transcribe(self, audio, init_prompt=""):
134
+
135
+ # tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
136
+ segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
137
+ #print(info) # info contains language detection result
138
+
139
+ return list(segments)
140
+
141
+ def ts_words(self, segments):
142
+ o = []
143
+ for segment in segments:
144
+ for word in segment.words:
145
+ # not stripping the spaces -- should not be merged with them!
146
+ w = word.word
147
+ t = (word.start, word.end, w)
148
+ o.append(t)
149
+ return o
150
+
151
+ def segments_end_ts(self, res):
152
+ return [s.end for s in res]
153
+
154
+ def use_vad(self):
155
+ self.transcribe_kargs["vad_filter"] = True
156
+
157
+ def set_translate_task(self):
158
+ self.transcribe_kargs["task"] = "translate"
159
+
160
+
161
+ class OpenaiApiASR(ASRBase):
162
+ """Uses OpenAI's Whisper API for audio transcription."""
163
+
164
+ def __init__(self, lan=None, temperature=0, logfile=sys.stderr):
165
+ self.logfile = logfile
166
+
167
+ self.modelname = "whisper-1"
168
+ self.original_language = None if lan == "auto" else lan # ISO-639-1 language code
169
+ self.response_format = "verbose_json"
170
+ self.temperature = temperature
171
+
172
+ self.load_model()
173
+
174
+ self.use_vad_opt = False
175
+
176
+ # reset the task in set_translate_task
177
+ self.task = "transcribe"
178
+
179
+ def load_model(self, *args, **kwargs):
180
+ from openai import OpenAI
181
+ self.client = OpenAI()
182
+
183
+ self.transcribed_seconds = 0 # for logging how many seconds were processed by API, to know the cost
184
+
185
+
186
+ def ts_words(self, segments):
187
+ no_speech_segments = []
188
+ if self.use_vad_opt:
189
+ for segment in segments.segments:
190
+ # TODO: threshold can be set from outside
191
+ if segment["no_speech_prob"] > 0.8:
192
+ no_speech_segments.append((segment.get("start"), segment.get("end")))
193
+
194
+ o = []
195
+ for word in segments.words:
196
+ start = word.get("start")
197
+ end = word.get("end")
198
+ if any(s[0] <= start <= s[1] for s in no_speech_segments):
199
+ # print("Skipping word", word.get("word"), "because it's in a no-speech segment")
200
+ continue
201
+ o.append((start, end, word.get("word")))
202
+ return o
203
+
204
+
205
+ def segments_end_ts(self, res):
206
+ return [s["end"] for s in res.words]
207
+
208
+ def transcribe(self, audio_data, prompt=None, *args, **kwargs):
209
+ # Write the audio data to a buffer
210
+ buffer = io.BytesIO()
211
+ buffer.name = "temp.wav"
212
+ sf.write(buffer, audio_data, samplerate=16000, format='WAV', subtype='PCM_16')
213
+ buffer.seek(0) # Reset buffer's position to the beginning
214
+
215
+ self.transcribed_seconds += math.ceil(len(audio_data)/16000) # it rounds up to the whole seconds
216
+
217
+ params = {
218
+ "model": self.modelname,
219
+ "file": buffer,
220
+ "response_format": self.response_format,
221
+ "temperature": self.temperature,
222
+ "timestamp_granularities": ["word", "segment"]
223
+ }
224
+ if self.task != "translate" and self.original_language:
225
+ params["language"] = self.original_language
226
+ if prompt:
227
+ params["prompt"] = prompt
228
+
229
+ if self.task == "translate":
230
+ proc = self.client.audio.translations
231
+ else:
232
+ proc = self.client.audio.transcriptions
233
+
234
+ # Process transcription/translation
235
+ transcript = proc.create(**params)
236
+ logger.debug(f"OpenAI API processed accumulated {self.transcribed_seconds} seconds")
237
+
238
+ return transcript
239
+
240
+ def use_vad(self):
241
+ self.use_vad_opt = True
242
+
243
+ def set_translate_task(self):
244
+ self.task = "translate"
245
+
246
+
247
+
248
+
249
+ class HypothesisBuffer:
250
+
251
+ def __init__(self, logfile=sys.stderr):
252
+ self.commited_in_buffer = []
253
+ self.buffer = []
254
+ self.new = []
255
+
256
+ self.last_commited_time = 0
257
+ self.last_commited_word = None
258
+
259
+ self.logfile = logfile
260
+
261
+ def insert(self, new, offset):
262
+ # compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
263
+ # the new tail is added to self.new
264
+
265
+ new = [(a+offset,b+offset,t) for a,b,t in new]
266
+ self.new = [(a,b,t) for a,b,t in new if a > self.last_commited_time-0.1]
267
+
268
+ if len(self.new) >= 1:
269
+ a,b,t = self.new[0]
270
+ if abs(a - self.last_commited_time) < 1:
271
+ if self.commited_in_buffer:
272
+ # it's going to search for 1, 2, ..., 5 consecutive words (n-grams) that are identical in commited and new. If they are, they're dropped.
273
+ cn = len(self.commited_in_buffer)
274
+ nn = len(self.new)
275
+ for i in range(1,min(min(cn,nn),5)+1): # 5 is the maximum
276
+ c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1])
277
+ tail = " ".join(self.new[j-1][2] for j in range(1,i+1))
278
+ if c == tail:
279
+ words = []
280
+ for j in range(i):
281
+ words.append(repr(self.new.pop(0)))
282
+ words_msg = " ".join(words)
283
+ logger.debug(f"removing last {i} words: {words_msg}")
284
+ break
285
+
286
+ def flush(self):
287
+ # returns commited chunk = the longest common prefix of 2 last inserts.
288
+
289
+ commit = []
290
+ while self.new:
291
+ na, nb, nt = self.new[0]
292
+
293
+ if len(self.buffer) == 0:
294
+ break
295
+
296
+ if nt == self.buffer[0][2]:
297
+ commit.append((na,nb,nt))
298
+ self.last_commited_word = nt
299
+ self.last_commited_time = nb
300
+ self.buffer.pop(0)
301
+ self.new.pop(0)
302
+ else:
303
+ break
304
+ self.buffer = self.new
305
+ self.new = []
306
+ self.commited_in_buffer.extend(commit)
307
+ return commit
308
+
309
+ def pop_commited(self, time):
310
+ while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time:
311
+ self.commited_in_buffer.pop(0)
312
+
313
+ def complete(self):
314
+ return self.buffer
315
+
316
+ class OnlineASRProcessor:
317
+
318
+ SAMPLING_RATE = 16000
319
+
320
+ def __init__(self, asr, tokenizer=None, buffer_trimming=("segment", 15), logfile=sys.stderr):
321
+ """asr: WhisperASR object
322
+ tokenizer: sentence tokenizer object for the target language. Must have a method *split* that behaves like the one of MosesTokenizer. It can be None, if "segment" buffer trimming option is used, then tokenizer is not used at all.
323
+ ("segment", 15)
324
+ buffer_trimming: a pair of (option, seconds), where option is either "sentence" or "segment", and seconds is a number. Buffer is trimmed if it is longer than "seconds" threshold. Default is the most recommended option.
325
+ logfile: where to store the log.
326
+ """
327
+ self.asr = asr
328
+ self.tokenizer = tokenizer
329
+ self.logfile = logfile
330
+
331
+ self.init()
332
+
333
+ self.buffer_trimming_way, self.buffer_trimming_sec = buffer_trimming
334
+
335
+ def init(self):
336
+ """run this when starting or restarting processing"""
337
+ self.audio_buffer = np.array([],dtype=np.float32)
338
+ self.buffer_time_offset = 0
339
+
340
+ self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
341
+ self.commited = []
342
+
343
+ def insert_audio_chunk(self, audio):
344
+ self.audio_buffer = np.append(self.audio_buffer, audio)
345
+
346
+ def prompt(self):
347
+ """Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer.
348
+ "context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
349
+ """
350
+ k = max(0,len(self.commited)-1)
351
+ while k > 0 and self.commited[k-1][1] > self.buffer_time_offset:
352
+ k -= 1
353
+
354
+ p = self.commited[:k]
355
+ p = [t for _,_,t in p]
356
+ prompt = []
357
+ l = 0
358
+ while p and l < 200: # 200 characters prompt size
359
+ x = p.pop(-1)
360
+ l += len(x)+1
361
+ prompt.append(x)
362
+ non_prompt = self.commited[k:]
363
+ return self.asr.sep.join(prompt[::-1]), self.asr.sep.join(t for _,_,t in non_prompt)
364
+
365
+ def process_iter(self):
366
+ """Runs on the current audio buffer.
367
+ Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, "").
368
+ The non-emty text is confirmed (committed) partial transcript.
369
+ """
370
+
371
+ prompt, non_prompt = self.prompt()
372
+ logger.debug(f"PROMPT: {prompt}")
373
+ logger.debug(f"CONTEXT: {non_prompt}")
374
+ logger.debug(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}")
375
+ res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)
376
+
377
+ # transform to [(beg,end,"word1"), ...]
378
+ tsw = self.asr.ts_words(res)
379
+
380
+ self.transcript_buffer.insert(tsw, self.buffer_time_offset)
381
+ o = self.transcript_buffer.flush()
382
+ self.commited.extend(o)
383
+ completed = self.to_flush(o)
384
+ logger.debug(f">>>>COMPLETE NOW: {completed}")
385
+ the_rest = self.to_flush(self.transcript_buffer.complete())
386
+ logger.debug(f"INCOMPLETE: {the_rest}")
387
+
388
+ # there is a newly confirmed text
389
+
390
+ if o and self.buffer_trimming_way == "sentence": # trim the completed sentences
391
+ if len(self.audio_buffer)/self.SAMPLING_RATE > self.buffer_trimming_sec: # longer than this
392
+ self.chunk_completed_sentence()
393
+
394
+
395
+ if self.buffer_trimming_way == "segment":
396
+ s = self.buffer_trimming_sec # trim the completed segments longer than s,
397
+ else:
398
+ s = 30 # if the audio buffer is longer than 30s, trim it
399
+
400
+ if len(self.audio_buffer)/self.SAMPLING_RATE > s:
401
+ self.chunk_completed_segment(res)
402
+
403
+ # alternative: on any word
404
+ #l = self.buffer_time_offset + len(self.audio_buffer)/self.SAMPLING_RATE - 10
405
+ # let's find commited word that is less
406
+ #k = len(self.commited)-1
407
+ #while k>0 and self.commited[k][1] > l:
408
+ # k -= 1
409
+ #t = self.commited[k][1]
410
+ logger.debug("chunking segment")
411
+ #self.chunk_at(t)
412
+
413
+ logger.debug(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}")
414
+ return self.to_flush(o)
415
+
416
+ def chunk_completed_sentence(self):
417
+ if self.commited == []: return
418
+ logger.debug(self.commited)
419
+ sents = self.words_to_sentences(self.commited)
420
+ for s in sents:
421
+ logger.debug(f"\t\tSENT: {s}")
422
+ if len(sents) < 2:
423
+ return
424
+ while len(sents) > 2:
425
+ sents.pop(0)
426
+ # we will continue with audio processing at this timestamp
427
+ chunk_at = sents[-2][1]
428
+
429
+ logger.debug(f"--- sentence chunked at {chunk_at:2.2f}")
430
+ self.chunk_at(chunk_at)
431
+
432
+ def chunk_completed_segment(self, res):
433
+ if self.commited == []: return
434
+
435
+ ends = self.asr.segments_end_ts(res)
436
+
437
+ t = self.commited[-1][1]
438
+
439
+ if len(ends) > 1:
440
+
441
+ e = ends[-2]+self.buffer_time_offset
442
+ while len(ends) > 2 and e > t:
443
+ ends.pop(-1)
444
+ e = ends[-2]+self.buffer_time_offset
445
+ if e <= t:
446
+ logger.debug(f"--- segment chunked at {e:2.2f}")
447
+ self.chunk_at(e)
448
+ else:
449
+ logger.debug(f"--- last segment not within commited area")
450
+ else:
451
+ logger.debug(f"--- not enough segments to chunk")
452
+
453
+
454
+
455
+
456
+
457
+ def chunk_at(self, time):
458
+ """trims the hypothesis and audio buffer at "time"
459
+ """
460
+ self.transcript_buffer.pop_commited(time)
461
+ cut_seconds = time - self.buffer_time_offset
462
+ self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):]
463
+ self.buffer_time_offset = time
464
+
465
+ def words_to_sentences(self, words):
466
+ """Uses self.tokenizer for sentence segmentation of words.
467
+ Returns: [(beg,end,"sentence 1"),...]
468
+ """
469
+
470
+ cwords = [w for w in words]
471
+ t = " ".join(o[2] for o in cwords)
472
+ s = self.tokenizer.split(t)
473
+ out = []
474
+ while s:
475
+ beg = None
476
+ end = None
477
+ sent = s.pop(0).strip()
478
+ fsent = sent
479
+ while cwords:
480
+ b,e,w = cwords.pop(0)
481
+ w = w.strip()
482
+ if beg is None and sent.startswith(w):
483
+ beg = b
484
+ elif end is None and sent == w:
485
+ end = e
486
+ out.append((beg,end,fsent))
487
+ break
488
+ sent = sent[len(w):].strip()
489
+ return out
490
+
491
+ def finish(self):
492
+ """Flush the incomplete text when the whole processing ends.
493
+ Returns: the same format as self.process_iter()
494
+ """
495
+ o = self.transcript_buffer.complete()
496
+ f = self.to_flush(o)
497
+ logger.debug("last, noncommited: {f}")
498
+ return f
499
+
500
+
501
+ def to_flush(self, sents, sep=None, offset=0, ):
502
+ # concatenates the timestamped words or sentences into one sequence that is flushed in one line
503
+ # sents: [(beg1, end1, "sentence1"), ...] or [] if empty
504
+ # return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
505
+ if sep is None:
506
+ sep = self.asr.sep
507
+ t = sep.join(s[2] for s in sents)
508
+ if len(sents) == 0:
509
+ b = None
510
+ e = None
511
+ else:
512
+ b = offset + sents[0][0]
513
+ e = offset + sents[-1][1]
514
+ return (b,e,t)
515
+
516
+ WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(",")
517
+
518
+ def create_tokenizer(lan):
519
+ """returns an object that has split function that works like the one of MosesTokenizer"""
520
+
521
+ assert lan in WHISPER_LANG_CODES, "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES)
522
+
523
+ if lan == "uk":
524
+ import tokenize_uk
525
+ class UkrainianTokenizer:
526
+ def split(self, text):
527
+ return tokenize_uk.tokenize_sents(text)
528
+ return UkrainianTokenizer()
529
+
530
+ # supported by fast-mosestokenizer
531
+ if lan in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split():
532
+ from mosestokenizer import MosesTokenizer
533
+ return MosesTokenizer(lan)
534
+
535
+ # the following languages are in Whisper, but not in wtpsplit:
536
+ if lan in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split():
537
+ logger.debug(f"{lan} code is not supported by wtpsplit. Going to use None lang_code option.")
538
+ lan = None
539
+
540
+ from wtpsplit import WtP
541
+ # downloads the model from huggingface on the first use
542
+ wtp = WtP("wtp-canine-s-12l-no-adapters")
543
+ class WtPtok:
544
+ def split(self, sent):
545
+ return wtp.split(sent, lang_code=lan)
546
+ return WtPtok()
547
+
548
+
549
+ def add_shared_args(parser):
550
+ """shared args for simulation (this entry point) and server
551
+ parser: argparse.ArgumentParser object
552
+ """
553
+ parser.add_argument('--min-chunk-size', type=float, default=1.0, help='Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.')
554
+ parser.add_argument('--model', type=str, default='large-v2', choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large".split(","),help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.")
555
+ parser.add_argument('--model_cache_dir', type=str, default=None, help="Overriding the default model cache dir where models downloaded from the hub are saved")
556
+ parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
557
+ parser.add_argument('--lan', '--language', type=str, default='auto', help="Source language code, e.g. en,de,cs, or 'auto' for language detection.")
558
+ parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
559
+ parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped", "openai-api"],help='Load only this backend for Whisper processing.')
560
+ parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
561
+ parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
562
+ parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
563
+ parser.add_argument("-l", "--log-level", dest="log_level", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help="Set the log level", default='DEBUG')
564
+
565
+ def asr_factory(args, logfile=sys.stderr):
566
+ """
567
+ Creates and configures an ASR and ASR Online instance based on the specified backend and arguments.
568
+ """
569
+ backend = args.backend
570
+ if backend == "openai-api":
571
+ logger.debug("Using OpenAI API.")
572
+ asr = OpenaiApiASR(lan=args.lan)
573
+ else:
574
+ if backend == "faster-whisper":
575
+ asr_cls = FasterWhisperASR
576
+ else:
577
+ asr_cls = WhisperTimestampedASR
578
+
579
+ # Only for FasterWhisperASR and WhisperTimestampedASR
580
+ size = args.model
581
+ t = time.time()
582
+ logger.info(f"Loading Whisper {size} model for {args.lan}...")
583
+ asr = asr_cls(modelsize=size, lan=args.lan, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
584
+ e = time.time()
585
+ logger.info(f"done. It took {round(e-t,2)} seconds.")
586
+
587
+ # Apply common configurations
588
+ if getattr(args, 'vad', False): # Checks if VAD argument is present and True
589
+ logger.info("Setting VAD filter")
590
+ asr.use_vad()
591
+
592
+ language = args.lan
593
+ if args.task == "translate":
594
+ asr.set_translate_task()
595
+ tgt_language = "en" # Whisper translates into English
596
+ else:
597
+ tgt_language = language # Whisper transcribes in this language
598
+
599
+ # Create the tokenizer
600
+ if args.buffer_trimming == "sentence":
601
+ tokenizer = create_tokenizer(tgt_language)
602
+ else:
603
+ tokenizer = None
604
+
605
+ # Create the OnlineASRProcessor
606
+ online = OnlineASRProcessor(asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
607
+
608
+ return asr, online
609
+
610
+ def set_logging(args,logger,other="_server"):
611
+ logging.basicConfig(#format='%(name)s
612
+ format='%(levelname)s\t%(message)s')
613
+ logger.setLevel(args.log_level)
614
+ logging.getLogger("whisper_online"+other).setLevel(args.log_level)
615
+ # logging.getLogger("whisper_online_server").setLevel(args.log_level)
616
+
617
+
618
+
619
+ if __name__ == "__main__":
620
+
621
+ import argparse
622
+ parser = argparse.ArgumentParser()
623
+ parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.")
624
+ add_shared_args(parser)
625
+ parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
626
+ parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
627
+ parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.')
628
+
629
+ args = parser.parse_args()
630
+
631
+ # reset to store stderr to different file stream, e.g. open(os.devnull,"w")
632
+ logfile = sys.stderr
633
+
634
+ if args.offline and args.comp_unaware:
635
+ logger.error("No or one option from --offline and --comp_unaware are available, not both. Exiting.")
636
+ sys.exit(1)
637
+
638
+ # if args.log_level:
639
+ # logging.basicConfig(format='whisper-%(levelname)s:%(name)s: %(message)s',
640
+ # level=getattr(logging, args.log_level))
641
+
642
+ set_logging(args,logger)
643
+
644
+ audio_path = args.audio_path
645
+
646
+ SAMPLING_RATE = 16000
647
+ duration = len(load_audio(audio_path))/SAMPLING_RATE
648
+ logger.info("Audio duration is: %2.2f seconds" % duration)
649
+
650
+ asr, online = asr_factory(args, logfile=logfile)
651
+ min_chunk = args.min_chunk_size
652
+
653
+ # load the audio into the LRU cache before we start the timer
654
+ a = load_audio_chunk(audio_path,0,1)
655
+
656
+ # warm up the ASR because the very first transcribe takes much more time than the other
657
+ asr.transcribe(a)
658
+
659
+ beg = args.start_at
660
+ start = time.time()-beg
661
+
662
+ def output_transcript(o, now=None):
663
+ # output format in stdout is like:
664
+ # 4186.3606 0 1720 Takhle to je
665
+ # - the first three words are:
666
+ # - emission time from beginning of processing, in milliseconds
667
+ # - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
668
+ # - the next words: segment transcript
669
+ if now is None:
670
+ now = time.time()-start
671
+ if o[0] is not None:
672
+ print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),file=logfile,flush=True)
673
+ print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
674
+ else:
675
+ # No text, so no output
676
+ pass
677
+
678
+ if args.offline: ## offline mode processing (for testing/debugging)
679
+ a = load_audio(audio_path)
680
+ online.insert_audio_chunk(a)
681
+ try:
682
+ o = online.process_iter()
683
+ except AssertionError as e:
684
+ log.error(f"assertion error: {repr(e)}")
685
+ else:
686
+ output_transcript(o)
687
+ now = None
688
+ elif args.comp_unaware: # computational unaware mode
689
+ end = beg + min_chunk
690
+ while True:
691
+ a = load_audio_chunk(audio_path,beg,end)
692
+ online.insert_audio_chunk(a)
693
+ try:
694
+ o = online.process_iter()
695
+ except AssertionError as e:
696
+ logger.error(f"assertion error: {repr(e)}")
697
+ pass
698
+ else:
699
+ output_transcript(o, now=end)
700
+
701
+ logger.debug(f"## last processed {end:.2f}s")
702
+
703
+ if end >= duration:
704
+ break
705
+
706
+ beg = end
707
+
708
+ if end + min_chunk > duration:
709
+ end = duration
710
+ else:
711
+ end += min_chunk
712
+ now = duration
713
+
714
+ else: # online = simultaneous mode
715
+ end = 0
716
+ while True:
717
+ now = time.time() - start
718
+ if now < end+min_chunk:
719
+ time.sleep(min_chunk+end-now)
720
+ end = time.time() - start
721
+ a = load_audio_chunk(audio_path,beg,end)
722
+ beg = end
723
+ online.insert_audio_chunk(a)
724
+
725
+ try:
726
+ o = online.process_iter()
727
+ except AssertionError as e:
728
+ logger.error(f"assertion error: {e}")
729
+ pass
730
+ else:
731
+ output_transcript(o)
732
+ now = time.time() - start
733
+ logger.debug(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}")
734
+
735
+ if end >= duration:
736
+ break
737
+ now = None
738
+
739
+ o = online.finish()
740
+ output_transcript(o, now=now)