Spaces:
Sleeping
Sleeping
Nico8800
commited on
Commit
·
e051030
1
Parent(s):
a755c90
add curl agent with elbow and shoulder tools
Browse files
Modules/PoseEstimation/curl_agent.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from Modules.PoseEstimation.pose_estimator import calculate_angle, joints_id_dict, model
|
2 |
+
from langchain.tools import tool
|
3 |
+
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
5 |
+
from langchain_core.messages import HumanMessage
|
6 |
+
from langchain_mistralai.chat_models import ChatMistralAI
|
7 |
+
|
8 |
+
from operator import itemgetter
|
9 |
+
from typing import Dict, List, Union
|
10 |
+
|
11 |
+
from langchain_core.messages import AIMessage
|
12 |
+
from langchain_core.runnables import (
|
13 |
+
Runnable,
|
14 |
+
RunnableLambda,
|
15 |
+
RunnableMap,
|
16 |
+
RunnablePassthrough,
|
17 |
+
)
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
# If api_key is not passed, default behavior is to use the `MISTRAL_API_KEY` environment variable.
|
22 |
+
llm = ChatMistralAI(model='mistral-large-latest', api_key="i5jSJkCFNGKfgIztloxTMjfckiFbYBj4")
|
23 |
+
|
24 |
+
@tool
|
25 |
+
def shoulder_angle(pose: list) -> float:
|
26 |
+
|
27 |
+
"""
|
28 |
+
Computes the shoulder angle.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
pose (list): list of keypoints
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
arm_angle (float): arm angle with chest
|
35 |
+
"""
|
36 |
+
right_elbow = pose[joints_id_dict['right_elbow']]
|
37 |
+
right_shoulder = pose[joints_id_dict['right_shoulder']]
|
38 |
+
right_hip = pose[joints_id_dict['right_hip']]
|
39 |
+
|
40 |
+
left_elbow = pose[joints_id_dict['left_elbow']]
|
41 |
+
left_shoulder = pose[joints_id_dict['left_shoulder']]
|
42 |
+
left_hip = pose[joints_id_dict['left_hip']]
|
43 |
+
|
44 |
+
right_arm_angle = calculate_angle(right_elbow, right_shoulder, right_hip)
|
45 |
+
left_arm_angle = calculate_angle(left_elbow, left_shoulder, left_hip)
|
46 |
+
|
47 |
+
return right_arm_angle
|
48 |
+
|
49 |
+
|
50 |
+
@tool
|
51 |
+
def elbow_angle(pose):
|
52 |
+
"""
|
53 |
+
Computes the elbow angle.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
pose (list): list of keypoints
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
elbow_angle (float): elbow angle with chest
|
60 |
+
"""
|
61 |
+
right_elbow = pose[joints_id_dict['right_elbow']]
|
62 |
+
right_shoulder = pose[joints_id_dict['right_shoulder']]
|
63 |
+
right_wrist = pose[joints_id_dict['right_wrist']]
|
64 |
+
|
65 |
+
left_elbow = pose[joints_id_dict['left_elbow']]
|
66 |
+
left_shoulder = pose[joints_id_dict['left_shoulder']]
|
67 |
+
left_wrist = pose[joints_id_dict['left_wrist']]
|
68 |
+
|
69 |
+
right_elbow_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)
|
70 |
+
left_elbow_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)
|
71 |
+
|
72 |
+
return right_elbow_angle
|
73 |
+
|
74 |
+
|
75 |
+
tools = [shoulder_angle, elbow_angle]
|
76 |
+
|
77 |
+
llm_with_tools = llm.bind_tools(tools)
|
78 |
+
tool_map = {tool.name: tool for tool in tools}
|
79 |
+
|
80 |
+
# prompt = ChatPromptTemplate.from_messages(
|
81 |
+
# [
|
82 |
+
# (
|
83 |
+
# "system",
|
84 |
+
# "You are a helpful assistant. Make sure to use the compute_right_knee_angle tool for information.",
|
85 |
+
# ),
|
86 |
+
# ("placeholder", "{chat_history}"),
|
87 |
+
# ("human", "{input}"),
|
88 |
+
# ("placeholder", "{agent_scratchpad}"),
|
89 |
+
# ]
|
90 |
+
# )
|
91 |
+
|
92 |
+
# Construct the Tools agent
|
93 |
+
# curl_agent = create_tool_calling_agent(llm, tools, prompt)
|
94 |
+
|
95 |
+
|
96 |
+
pose_sequence = [
|
97 |
+
# Pose 1
|
98 |
+
[
|
99 |
+
# Head
|
100 |
+
[50, 50],
|
101 |
+
# Shoulders
|
102 |
+
[40, 80], [60, 80],
|
103 |
+
# Elbows
|
104 |
+
[30, 110], [70, 110],
|
105 |
+
# Wrists
|
106 |
+
[25, 140], [75, 140],
|
107 |
+
# Hips
|
108 |
+
[45, 180], [55, 180],
|
109 |
+
# Knees
|
110 |
+
[40, 220], [60, 220],
|
111 |
+
# Ankles
|
112 |
+
[35, 250], [65, 250],
|
113 |
+
],
|
114 |
+
# Pose 2
|
115 |
+
[
|
116 |
+
# Head
|
117 |
+
[60, 60],
|
118 |
+
# Shoulders
|
119 |
+
[50, 90], [70, 90],
|
120 |
+
# Elbows
|
121 |
+
[40, 120], [80, 120],
|
122 |
+
# Wrists
|
123 |
+
[35, 150], [85, 150],
|
124 |
+
# Hips
|
125 |
+
[55, 180], [65, 180],
|
126 |
+
# Knees
|
127 |
+
[50, 220], [70, 220],
|
128 |
+
# Ankles
|
129 |
+
[45, 250], [75, 250],
|
130 |
+
]]
|
131 |
+
|
132 |
+
# Create an agent executor by passing in the agent and tools
|
133 |
+
# agent_executor = AgentExecutor(agent=curl_agent, tools=tools, verbose=True)
|
134 |
+
# agent_executor.invoke({"input": f"Compute shoulder and elbow angle and display them given the following pose estimation: {pose_sequence[0]}"})
|
135 |
+
|
136 |
+
def call_tools(msg: AIMessage) -> Runnable:
|
137 |
+
"""Simple sequential tool calling helper."""
|
138 |
+
tool_map = {tool.name: tool for tool in tools}
|
139 |
+
tool_calls = msg.tool_calls.copy()
|
140 |
+
for tool_call in tool_calls:
|
141 |
+
tool_call["output"] = tool_map[tool_call["name"]].invoke(tool_call["args"])
|
142 |
+
return tool_calls
|
143 |
+
|
144 |
+
|
145 |
+
chain = llm_with_tools | call_tools
|
146 |
+
|
147 |
+
print(chain.invoke(f"What is the shoulder angle and elbow angle given the following pose estimation: {pose_sequence[0]}"))
|