Spaces:
Sleeping
Sleeping
Doux Thibault
commited on
Commit
•
9a30a8c
1
Parent(s):
025e412
rag to streamlit + new pdf
Browse files- Modules/rag.py +28 -17
- app.py +15 -2
- data/pdf/F12_Strength&Conditioning_Program.pdf +3 -0
Modules/rag.py
CHANGED
@@ -9,17 +9,24 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain_community.document_loaders import WebBaseLoader
|
11 |
from langchain_community.vectorstores import Chroma, FAISS
|
|
|
12 |
from langchain_mistralai import MistralAIEmbeddings
|
13 |
from langchain import hub
|
|
|
|
|
|
|
|
|
14 |
from typing import Literal
|
15 |
-
from langchain_core.prompts import ChatPromptTemplate
|
16 |
from langchain_core.pydantic_v1 import BaseModel, Field
|
17 |
from langchain_mistralai import ChatMistralAI
|
18 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
19 |
from langchain_community.tools import DuckDuckGoSearchRun
|
|
|
20 |
|
21 |
def load_chunk_persist_pdf() -> Chroma:
|
22 |
-
|
|
|
23 |
documents = []
|
24 |
for file in os.listdir(pdf_folder_path):
|
25 |
if file.endswith('.pdf'):
|
@@ -32,7 +39,7 @@ def load_chunk_persist_pdf() -> Chroma:
|
|
32 |
vectorstore = Chroma.from_documents(
|
33 |
documents=chunked_documents,
|
34 |
embedding=MistralAIEmbeddings(),
|
35 |
-
persist_directory="data/chroma_store/"
|
36 |
)
|
37 |
vectorstore.persist()
|
38 |
return vectorstore
|
@@ -54,26 +61,29 @@ class RouteQuery(BaseModel):
|
|
54 |
# LLM with function call
|
55 |
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
Use the
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
)
|
69 |
-
prompt = hub.pull("rlm/rag-prompt")
|
70 |
from langchain_core.output_parsers import StrOutputParser
|
71 |
from langchain_core.runnables import RunnablePassthrough
|
72 |
|
73 |
def format_docs(docs):
|
74 |
return "\n\n".join(doc.page_content for doc in docs)
|
75 |
|
76 |
-
|
77 |
rag_chain = (
|
78 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
79 |
| prompt
|
@@ -81,6 +91,7 @@ rag_chain = (
|
|
81 |
| StrOutputParser()
|
82 |
)
|
83 |
|
84 |
-
|
|
|
85 |
|
86 |
# print(rag_chain.invoke("I am a 45 years old woman and I have to loose weight for the summer. Provide me with a fitness program"))
|
|
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain_community.document_loaders import WebBaseLoader
|
11 |
from langchain_community.vectorstores import Chroma, FAISS
|
12 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
13 |
from langchain_mistralai import MistralAIEmbeddings
|
14 |
from langchain import hub
|
15 |
+
from langchain.chains import (
|
16 |
+
create_history_aware_retriever,
|
17 |
+
create_retrieval_chain,
|
18 |
+
)
|
19 |
from typing import Literal
|
20 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
21 |
from langchain_core.pydantic_v1 import BaseModel, Field
|
22 |
from langchain_mistralai import ChatMistralAI
|
23 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
24 |
from langchain_community.tools import DuckDuckGoSearchRun
|
25 |
+
from pathlib import Path
|
26 |
|
27 |
def load_chunk_persist_pdf() -> Chroma:
|
28 |
+
|
29 |
+
pdf_folder_path = os.path.join(os.getcwd(),Path("data/pdf/"))
|
30 |
documents = []
|
31 |
for file in os.listdir(pdf_folder_path):
|
32 |
if file.endswith('.pdf'):
|
|
|
39 |
vectorstore = Chroma.from_documents(
|
40 |
documents=chunked_documents,
|
41 |
embedding=MistralAIEmbeddings(),
|
42 |
+
persist_directory= os.path.join(os.getcwd(),Path("data/chroma_store/"))
|
43 |
)
|
44 |
vectorstore.persist()
|
45 |
return vectorstore
|
|
|
61 |
# LLM with function call
|
62 |
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)
|
63 |
|
64 |
+
|
65 |
+
prompt = ChatPromptTemplate.from_template(
|
66 |
+
"""
|
67 |
+
You are a professional AI coach specialized in fitness, bodybuilding and nutrition.
|
68 |
+
You must adapt to the user : if he is a beginner, use simple words. You are gentle and motivative.
|
69 |
+
Use the following pieces of retrieved context to answer the question.
|
70 |
+
If you don't know the answer, just say that you don't know, and to refer to a nutritionist or a doctor.
|
71 |
+
Use three sentences maximum and keep the answer concise.
|
72 |
+
|
73 |
+
Question: {question}
|
74 |
+
|
75 |
+
Context: {context}
|
76 |
+
|
77 |
+
Answer:
|
78 |
+
""",
|
79 |
)
|
|
|
80 |
from langchain_core.output_parsers import StrOutputParser
|
81 |
from langchain_core.runnables import RunnablePassthrough
|
82 |
|
83 |
def format_docs(docs):
|
84 |
return "\n\n".join(doc.page_content for doc in docs)
|
85 |
|
86 |
+
|
87 |
rag_chain = (
|
88 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
89 |
| prompt
|
|
|
91 |
| StrOutputParser()
|
92 |
)
|
93 |
|
94 |
+
|
95 |
+
# print(rag_chain.invoke("Build a fitness program for me. Be precise in terms of exercises"))
|
96 |
|
97 |
# print(rag_chain.invoke("I am a 45 years old woman and I have to loose weight for the summer. Provide me with a fitness program"))
|
app.py
CHANGED
@@ -6,8 +6,19 @@ from langchain_mistralai import ChatMistralAI
|
|
6 |
from dotenv import load_dotenv
|
7 |
load_dotenv() # load .env api keys
|
8 |
import os
|
|
|
|
|
|
|
9 |
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
|
12 |
# Create two columns
|
13 |
col1, col2 = st.columns(2)
|
@@ -43,8 +54,10 @@ with col1:
|
|
43 |
|
44 |
with st.chat_message("assistant"):
|
45 |
# Build answer from LLM
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
49 |
st.markdown(response)
|
50 |
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
load_dotenv() # load .env api keys
|
8 |
import os
|
9 |
+
|
10 |
+
from Modules.rag import rag_chain
|
11 |
+
|
12 |
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
13 |
|
14 |
+
def format_messages(messages):
|
15 |
+
formatted_messages = ""
|
16 |
+
for message in messages:
|
17 |
+
role = message["role"]
|
18 |
+
content = message["content"]
|
19 |
+
formatted_messages += f"{role}: {content}\n"
|
20 |
+
return formatted_messages
|
21 |
+
|
22 |
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
|
23 |
# Create two columns
|
24 |
col1, col2 = st.columns(2)
|
|
|
54 |
|
55 |
with st.chat_message("assistant"):
|
56 |
# Build answer from LLM
|
57 |
+
response = rag_chain.invoke(
|
58 |
+
instruction
|
59 |
+
)
|
60 |
+
print(type(response))
|
61 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
62 |
st.markdown(response)
|
63 |
|
data/pdf/F12_Strength&Conditioning_Program.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b6d7c1c04d0a98433e00e4a3ce1586311164a3ac50fc0e14a8fffb65ca7356b
|
3 |
+
size 17579128
|