Enterwar99's picture
Update api_app.py
ccced2b verified
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
import torch.nn as nn
import io
import numpy as np
import os
from typing import List, Dict, Any, Optional
import logging
import cv2
import base64
from pytorch_grad_cam import GradCAMPlusPlus
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from huggingface_hub import hf_hub_download
from pydantic import BaseModel
# --- Konfiguracja Logowania ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Konfiguracja ---
HF_MODEL_REPO_ID = "Enterwar99/MODEL_MAMMOGRAFII"
MODEL_FILENAME = "best_model.pth"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
# Globalne zmienne dla modelu i transformacji
model_instance = None
transform_pipeline = None
interpretations_dict = {
1: "Wynik negatywny - brak zmian nowotworowych",
2: "Zmiana 艂agodna",
3: "Prawdopodobnie zmiana 艂agodna - zalecana kontrola",
4: "Podejrzenie zmiany z艂o艣liwej - zalecana biopsja",
5: "Wysoka podejrzliwo艣膰 z艂o艣liwo艣ci - wymagana biopsja"
}
# --- Inicjalizacja modelu ---
def initialize_model():
global model_instance, transform_pipeline
if model_instance is not None:
return
logger.info("Rozpoczynanie inicjalizacji modelu...")
try:
hf_auth_token = os.environ.get("HF_TOKEN_MODEL_READ")
model_pt_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=MODEL_FILENAME, token=hf_auth_token)
logger.info(f"Plik modelu pomy艣lnie pobrany do: {model_pt_path}")
except Exception as e:
logger.error(f"B艂膮d podczas pobierania modelu z Hugging Face Hub: {e}", exc_info=True)
raise RuntimeError(f"Nie mo偶na pobra膰 modelu: {e}")
model_arch = models.resnet18(weights=None)
num_feats = model_arch.fc.in_features
model_arch.fc = nn.Sequential(nn.Dropout(0.5), nn.Linear(num_feats, 5))
model_arch.load_state_dict(torch.load(model_pt_path, map_location=DEVICE))
model_arch.to(DEVICE)
model_arch.eval()
model_instance = model_arch
transform_pipeline = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
logger.info(f"Model BI-RADS classifier initialized successfully on device: {DEVICE}")
# --- Funkcja do predykcji z kwantyfikacj膮 niepewno艣ci (MC Dropout) ---
def predict_with_mc_dropout(current_model_instance, batch_tensor_on_device, mc_dropout_samples: int, uncertainty_threshold_std: float):
logger.info(f"Performing MC Dropout on a batch of size {batch_tensor_on_device.shape[0]} with {mc_dropout_samples} samples.")
original_mode_is_training = current_model_instance.training
current_model_instance.train()
batch_size = batch_tensor_on_device.shape[0]
num_classes = 5
all_probs_batch = np.zeros((batch_size, mc_dropout_samples, num_classes))
with torch.no_grad():
for i in range(mc_dropout_samples):
output = current_model_instance(batch_tensor_on_device)
probs_tensor = torch.nn.functional.softmax(output, dim=1)
all_probs_batch[:, i, :] = probs_tensor.cpu().numpy()
if not original_mode_is_training:
current_model_instance.eval()
mean_probabilities_batch = np.mean(all_probs_batch, axis=1)
std_dev_probabilities_batch = np.std(all_probs_batch, axis=1)
results = []
for i in range(batch_size):
mean_probabilities = mean_probabilities_batch[i]
std_dev_probabilities = std_dev_probabilities_batch[i]
predicted_class_index = np.argmax(mean_probabilities)
confidence_in_predicted_class = float(np.max(all_probs_batch[i, :, predicted_class_index]))
uncertainty_metric = np.mean(std_dev_probabilities)
is_uncertain = uncertainty_metric > uncertainty_threshold_std
logger.info(f"MC Dropout Results for image {i}: Predicted Index: {int(predicted_class_index)}, Confidence (MaxProb): {confidence_in_predicted_class:.4f}, Uncertainty (avg_std): {uncertainty_metric:.4f}, Is Uncertain: {is_uncertain}")
birads_category_if_confident = int(predicted_class_index) + 1
if is_uncertain:
result = {
"birads": None, "confidence": None,
"interpretation": f"Model jest niepewny co do tego obrazu (niepewno艣膰: {uncertainty_metric:.4f}). Sprawd藕 jako艣膰 i typ obrazu.",
"class_probabilities": {str(j + 1): float(mean_probabilities[j]) for j in range(len(mean_probabilities))},
"grad_cam_image_base64": None, "error": "High prediction uncertainty",
"details": f"Uncertainty metric ({uncertainty_metric:.4f}) przekroczy艂a pr贸g ({uncertainty_threshold_std})."
}
else:
result = {
"birads": birads_category_if_confident,
"confidence": confidence_in_predicted_class,
"interpretation": interpretations_dict.get(birads_category_if_confident, "Nieznana klasyfikacja"),
"class_probabilities": {str(j + 1): float(mean_probabilities[j]) for j in range(len(mean_probabilities))},
"grad_cam_image_base64": None, "error": None,
"details": f"Uncertainty metric ({uncertainty_metric:.4f}) jest w granicach progu ({uncertainty_threshold_std}).",
"predicted_class_index": predicted_class_index
}
results.append(result)
return results
# --- Funkcja do tworzenia obrazu z na艂o偶on膮 map膮 Grad-CAM ---
def create_grad_cam_overlay_image(original_pil_image: Image.Image, grayscale_cam: np.ndarray, birads_category: int, transparency: float = 0.5) -> Image.Image:
try:
img_np = np.array(original_pil_image.convert('RGB')).astype(np.float32) / 255.0
cam_resized = cv2.resize(grayscale_cam, (img_np.shape[1], img_np.shape[0]))
cam_normalized = (cam_resized - np.min(cam_resized)) / (np.max(cam_resized) - np.min(cam_resized) + 1e-8)
threshold = 0.7
cam_normalized[cam_normalized < threshold] = 0
kernel = np.ones((5, 5), np.uint8)
cam_cleaned = cv2.morphologyEx(cam_normalized, cv2.MORPH_OPEN, kernel)
birads_colors_rgb = {
1: (0.1, 0.7, 0.1), 2: (0.53, 0.81, 0.92), 3: (1.0, 0.9, 0.0),
4: (1.0, 0.5, 0.0), 5: (0.9, 0.1, 0.1)
}
chosen_color = np.array(birads_colors_rgb.get(birads_category, (0.5, 0.5, 0.5)))
color_overlay_np = np.zeros_like(img_np)
for c in range(3): color_overlay_np[:, :, c] = chosen_color[c]
alpha = cam_cleaned * transparency
alpha_expanded = alpha[..., np.newaxis]
highlighted_image_np = img_np * (1 - alpha_expanded) + color_overlay_np * alpha_expanded
highlighted_image_np = np.clip(highlighted_image_np, 0, 1)
final_image_np = (highlighted_image_np * 255).astype(np.uint8)
return Image.fromarray(final_image_np)
except Exception as e:
logger.error(f"B艂膮d podczas tworzenia obrazu Grad-CAM overlay: {e}", exc_info=True)
return None
# --- ZAKTUALIZOWANA Funkcja do heurystycznych test贸w OOD ---
def run_heuristic_ood_checks(pil_image: Image.Image, request_id: str, colorfulness_threshold: float, uniformity_threshold: float, aspect_ratio_min: float, aspect_ratio_max: float) -> Optional[str]:
"""
Wykonuje heurystyki OOD. Zwraca konkretny komunikat b艂臋du w razie problemu, w przeciwnym razie None.
"""
logger.info(f"[RequestID: {request_id}] Uruchamianie heurystycznych test贸w OOD...")
width, height = pil_image.size
# Sprawdzimy najpierw kolorowo艣膰, bo to najcz臋stszy problem
img_rgb_for_color_check = pil_image.convert('RGB')
img_np_rgb = np.array(img_rgb_for_color_check)
mean_std_across_channels = np.mean(np.std(img_np_rgb, axis=2))
logger.info(f"[RequestID: {request_id}] Heurystyka: Kolorowo艣膰 = {mean_std_across_channels:.2f} (pr贸g: {colorfulness_threshold})")
if mean_std_across_channels > colorfulness_threshold:
# Ten komunikat jest teraz bardziej specyficzny
msg = f"Wykryto kolorowy obraz (wska藕nik: {mean_std_across_channels:.2f}). System oczekuje obrazu w skali szaro艣ci, typowego dla bada艅 medycznych."
logger.warning(f"[RequestID: {request_id}] Heurystyka OOD ODRZUCONA: {msg}")
# Zwracamy specjalny typ b艂臋du, kt贸ry potem rozpoznamy
return f"INVALID_IMAGE_TYPE: {msg}"
aspect_ratio = width / height
if not (aspect_ratio_min < aspect_ratio < aspect_ratio_max):
msg = f"Nietypowe proporcje obrazu: {aspect_ratio:.2f}."
return f"HEURISTIC_FAILED: {msg}"
gray_image = pil_image.convert('L')
std_dev_intensity = np.std(np.array(gray_image))
if std_dev_intensity < uniformity_threshold:
msg = f"Obraz wydaje si臋 zbyt jednolity (np. ca艂y czarny): {std_dev_intensity:.2f}."
return f"HEURISTIC_FAILED: {msg}"
logger.info(f"[RequestID: {request_id}] Heurystyczne testy OOD zako艅czone pomy艣lnie.")
return None
# --- Aplikacja FastAPI ---
class PredictionResult(BaseModel):
birads: Optional[int] = None
confidence: Optional[float] = None
interpretation: str
class_probabilities: Dict[str, float]
grad_cam_image_base64: Optional[str] = None
error: Optional[str] = None
details: Optional[str] = None
app = FastAPI(title="BI-RADS Mammography Classification API")
@app.on_event("startup")
async def startup_event():
logger.info("Rozpoczynanie eventu startup aplikacji FastAPI.")
initialize_model()
# --- ZAKTUALIZOWANY Endpoint /predict/ ---
@app.post("/predict/", response_model=List[PredictionResult])
async def predict_images(
files: List[UploadFile] = File(...),
colorfulness_threshold: float = 2.0,
uniformity_threshold: float = 10.0,
aspect_ratio_min: float = 0.4,
aspect_ratio_max: float = 2.5,
mc_dropout_samples: int = 25,
uncertainty_threshold_std: float = 0.11
):
request_id = os.urandom(8).hex()
logger.info(f"[RequestID: {request_id}] Otrzymano 偶膮danie /predict/ dla {len(files)} plik贸w.")
if model_instance is None or transform_pipeline is None:
raise HTTPException(status_code=503, detail="Model nie jest zainicjalizowany.")
all_results = []
valid_images_pil = []
valid_tensors = []
original_indices = []
for idx, file in enumerate(files):
try:
contents = await file.read()
image_pil_original = Image.open(io.BytesIO(contents))
ood_error_details = run_heuristic_ood_checks(
image_pil_original.copy(), request_id,
colorfulness_threshold, uniformity_threshold, aspect_ratio_min, aspect_ratio_max
)
if ood_error_details:
# Rozpoznajemy nasz specjalny typ b艂臋du
if ood_error_details.startswith("INVALID_IMAGE_TYPE"):
error_type = "Invalid Image Type"
interpretation = "Przes艂any plik nie wygl膮da na obraz mammograficzny. Prosz臋 wgra膰 odpowiednie zdj臋cie USG."
details = ood_error_details.replace("INVALID_IMAGE_TYPE: ", "")
else: # Pozosta艂e b艂臋dy heurystyczne
error_type = "Heuristic OOD check failed"
interpretation = "Obraz odrzucony przez wst臋pne testy. Mo偶e mie膰 nietypowe wymiary lub by膰 zbyt jednolity."
details = ood_error_details.replace("HEURISTIC_FAILED: ", "")
result = PredictionResult(
interpretation=interpretation,
class_probabilities={}, error=error_type,
details=details
)
all_results.append((idx, result))
continue
image_rgb = image_pil_original.convert("RGB")
input_tensor = transform_pipeline(image_rgb).unsqueeze(0).to(DEVICE)
valid_images_pil.append(image_rgb)
valid_tensors.append(input_tensor)
original_indices.append(idx)
except Exception as e:
logger.error(f"[RequestID: {request_id}] B艂膮d podczas odczytu pliku {file.filename}: {e}", exc_info=True)
result = PredictionResult(
interpretation="B艂膮d podczas przetwarzania pliku.", class_probabilities={},
error="File processing error.", details=str(e)
)
all_results.append((idx, result))
if valid_tensors:
batch_tensor = torch.cat(valid_tensors, dim=0)
logger.info(f"[RequestID: {request_id}] Przetwarzanie wsadu {batch_tensor.shape[0]} poprawnych obraz贸w.")
mc_results = predict_with_mc_dropout(model_instance, batch_tensor, mc_dropout_samples, uncertainty_threshold_std)
model_instance.eval()
target_layers = [model_instance.layer4[-1]]
cam_algorithm = GradCAMPlusPlus(model=model_instance, target_layers=target_layers)
for i, result_dict in enumerate(mc_results):
if not result_dict.get("error"):
birads_cat = result_dict["birads"]
pred_idx = result_dict["predicted_class_index"]
input_tensor_for_cam = batch_tensor[i].unsqueeze(0).clone().detach().requires_grad_(True)
targets_for_cam = [ClassifierOutputTarget(pred_idx)]
grayscale_cam = cam_algorithm(input_tensor=input_tensor_for_cam, targets=targets_for_cam)
if grayscale_cam is not None:
overlay_image_pil = create_grad_cam_overlay_image(
original_pil_image=valid_images_pil[i],
grayscale_cam=grayscale_cam[0, :],
birads_category=birads_cat
)
if overlay_image_pil:
buffered = io.BytesIO()
overlay_image_pil.save(buffered, format="PNG")
result_dict["grad_cam_image_base64"] = base64.b64encode(buffered.getvalue()).decode('utf-8')
result_dict.pop("predicted_class_index", None)
all_results.append((original_indices[i], PredictionResult(**result_dict)))
all_results.sort(key=lambda x: x[0])
final_results = [res for _, res in all_results]
return final_results
@app.get("/")
async def root():
logger.info("Otrzymano 偶膮danie GET na /")
return {"message": "Witaj w BI-RADS Classification API! U偶yj endpointu /predict/ do wysy艂ania obraz贸w."}