URLer / app.py
Enoch1359's picture
Update app.py
3a56f8d verified
import os
import joblib
import langchain
import streamlit as st
import pickle as pkl
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_community.document_loaders import UnstructuredURLLoader,WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
import time
load_dotenv("ping.env")
api_key=os.getenv("OPENAI_API_KEY")
api_base=os.getenv("OPENAI_API_BASE")
llm=ChatOpenAI(model_name="google/gemma-3n-e2b-it:free",temperature=0)
try:
with open("embedmo.pkl", "rb") as f:
m1 = pkl.load(f)
# Quick sanity check
if not isinstance(m1, SentenceTransformerEmbeddings):
raise ValueError("Loaded object is not a SentenceTransformerEmbeddings instance.")
except Exception as e:
st.error(f"Failed to load embedding model: {str(e)}")
st.stop()
m2=joblib.load("m1.joblib")
st.title("URL ANALYSER🔗")
st.sidebar.title("Give your URls🔗?")
mp=st.empty()
urs=[]
for i in range(3):
url=st.sidebar.text_input(f"URL {i+1}🔗")
urs.append(url)
purs=st.button("gotcha", disabled=not any(url.strip() for url in urs))
if purs:
urs = [url.strip() for url in urs if url.strip()]
mp.text("Loading..URl..Loader....☑️☑️☑️")
valid_urls = [url for url in urs if url.strip()]
if not valid_urls:
st.warning("⚠️ No valid URLs entered.")
st.stop()
try:
sic = WebBaseLoader(valid_urls)
docs = sic.load()
except Exception as e:
st.error(f"❌ Failed to load URLs: {e}")
st.stop()
if not docs:
st.warning("⚠️ No content loaded from URLs. This might be due to network restrictions or invalid URLs.")
st.stop()
st.write(len(docs))
mp.text("Loading..txt..splitter....☑️☑️☑️")
tot=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512,chunk_overlap=16)
doccs=tot.split_documents(docs)
mp.text("Loading..VB...☑️☑️☑️")
vv=Chroma.from_documents(doccs,m1)
r2=vv.as_retriever(search_type="similarity",search_kwargs={"k":4})
mp.text("Loading..Retri....☑️☑️☑️")
ra1=RetrievalQAWithSourcesChain.from_chain_type(llm=llm,retriever=r2,chain_type="map_reduce")
st.session_state.ra1=ra1
mp.text("DB & Retri Done ✅✅✅")
time.sleep(3)
query=mp.text_input("UR Question??")
if query:
if "ra1" not in st.session_state:
st.warning("pls give ur urls")
else:
with st.spinner("Wait for it..."):
result=st.session_state.ra1({"question":query},return_only_outputs=True)
st.header("Answer")
st.subheader(result["answer"])