Update main.py
Browse files
main.py
CHANGED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import List, Optional, Literal
|
4 |
+
from gradio_client import Client
|
5 |
+
import uvicorn
|
6 |
+
import time
|
7 |
+
import uuid
|
8 |
+
|
9 |
+
# ==== Инициализация Gradio Client ====
|
10 |
+
gr_client = Client("Nymbo/Serverless-TextGen-Hub")
|
11 |
+
|
12 |
+
# ==== Функция обращения к нейросети ====
|
13 |
+
def ask(user_prompt, system_prompt, model):
|
14 |
+
result = gr_client.predict(
|
15 |
+
history=[[user_prompt, None]],
|
16 |
+
system_msg=system_prompt,
|
17 |
+
max_tokens=512,
|
18 |
+
temperature=0.7,
|
19 |
+
top_p=0.95,
|
20 |
+
freq_penalty=0,
|
21 |
+
seed=-1,
|
22 |
+
custom_model=model,
|
23 |
+
search_term="",
|
24 |
+
selected_model=model,
|
25 |
+
api_name="/bot"
|
26 |
+
)
|
27 |
+
return result
|
28 |
+
|
29 |
+
# ==== FastAPI приложение ====
|
30 |
+
app = FastAPI()
|
31 |
+
|
32 |
+
# ==== Модели запросов/ответов ====
|
33 |
+
class Message(BaseModel):
|
34 |
+
role: Literal["user", "assistant", "system"]
|
35 |
+
content: str
|
36 |
+
|
37 |
+
class ChatRequest(BaseModel):
|
38 |
+
model: str
|
39 |
+
messages: List[Message]
|
40 |
+
temperature: Optional[float] = 0.7
|
41 |
+
top_p: Optional[float] = 0.95
|
42 |
+
max_tokens: Optional[int] = 512
|
43 |
+
# остальные параметры можно добавить при необходимости
|
44 |
+
|
45 |
+
@app.post("/v1/chat/completions")
|
46 |
+
async def chat_completion(request: ChatRequest):
|
47 |
+
# Извлекаем последнее сообщение от пользователя
|
48 |
+
user_msg = next((m.content for m in reversed(request.messages) if m.role == "user"), None)
|
49 |
+
system_msg = next((m.content for m in request.messages if m.role == "system"), "You are a helpful AI assistant.")
|
50 |
+
|
51 |
+
if not user_msg:
|
52 |
+
return {"error": "User message not found."}
|
53 |
+
|
54 |
+
# Получаем ответ от модели
|
55 |
+
assistant_reply = ask(user_msg, system_msg, request.model)
|
56 |
+
|
57 |
+
# Формируем ответ в стиле OpenAI API
|
58 |
+
response = {
|
59 |
+
"id": f"chatcmpl-{uuid.uuid4().hex[:12]}",
|
60 |
+
"object": "chat.completion",
|
61 |
+
"created": int(time.time()),
|
62 |
+
"model": request.model,
|
63 |
+
"choices": [
|
64 |
+
{
|
65 |
+
"index": 0,
|
66 |
+
"message": {
|
67 |
+
"role": "assistant",
|
68 |
+
"content": assistant_reply
|
69 |
+
},
|
70 |
+
"finish_reason": "stop"
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"usage": {
|
74 |
+
"prompt_tokens": 0, # Можно вычислить при необходимости
|
75 |
+
"completion_tokens": 0,
|
76 |
+
"total_tokens": 0
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
return response
|
81 |
+
|
82 |
+
# ==== Запуск сервера ====
|
83 |
+
if __name__ == "__main__":
|
84 |
+
uvicorn.run("local_openai_server:app", host="0.0.0.0", port=7860, reload=True)
|