Emmawang's picture
first commit
da5bc99
raw
history blame
1.4 kB
import gradio as gr
from transformers import pipeline
from gtts import gTTS
def audio(text):
# Summarize the input text using the Hugging Face model
# Load the pre-trained summarization model from Hugging Face
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
summary = summarizer(text, do_sample=False)[0]["summary_text"]
# Convert the summary to audio using Google Text-to-Speech
tts = gTTS(summary)
tts.save("summary.mp3")
return "summary.mp3"
def text_summary(text):
# Summarize the input text using the Hugging Face model
# Load the pre-trained summarization model from Hugging Face
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
summary = summarizer(text, do_sample=False)[0]["summary_text"]
return summary
# using streamlit to create a web app to display the summary or play the audio
import streamlit as st
st.title("📌 Your Personal Audio Summary")
text = st.text_input("Enter text to summarize")
#choose between text summary or audio summary
option = st.selectbox("Choose between text summary or audio summary", ("📃Text Summary", "🗣Audio Summary"))
if st.button("Summarize"):
if option == "📃Text Summary":
summary = text_summary(text)
st.write(summary)
if option == "🗣Audio Summary":
file_path = audio(text)
st.audio(file_path)