Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from gtts import gTTS | |
def audio(text): | |
# Summarize the input text using the Hugging Face model | |
# Load the pre-trained summarization model from Hugging Face | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
summary = summarizer(text, do_sample=False)[0]["summary_text"] | |
# Convert the summary to audio using Google Text-to-Speech | |
tts = gTTS(summary) | |
tts.save("summary.mp3") | |
return "summary.mp3" | |
def text_summary(text): | |
# Summarize the input text using the Hugging Face model | |
# Load the pre-trained summarization model from Hugging Face | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
summary = summarizer(text, do_sample=False)[0]["summary_text"] | |
return summary | |
# using streamlit to create a web app to display the summary or play the audio | |
import streamlit as st | |
st.title("📌 Your Personal Audio Summary") | |
text = st.text_input("Enter text to summarize") | |
#choose between text summary or audio summary | |
option = st.selectbox("Choose between text summary or audio summary", ("📃Text Summary", "🗣Audio Summary")) | |
if st.button("Summarize"): | |
if option == "📃Text Summary": | |
summary = text_summary(text) | |
st.write(summary) | |
if option == "🗣Audio Summary": | |
file_path = audio(text) | |
st.audio(file_path) | |