Spaces:
Sleeping
Sleeping
Delete pages/Summary.py
Browse files- pages/Summary.py +0 -137
pages/Summary.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
import re
|
4 |
-
|
5 |
-
import streamlit as st
|
6 |
-
import pandas as pd
|
7 |
-
import requests
|
8 |
-
from wordcloud import WordCloud
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
|
11 |
-
|
12 |
-
# Установка API URL и заголовков
|
13 |
-
API_URL_TRA = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-en-ru"
|
14 |
-
API_URL_KEY = "https://api-inference.huggingface.co/models/ml6team/keyphrase-extraction-kbir-inspec"
|
15 |
-
API_URL_SUM = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
|
16 |
-
|
17 |
-
TOKEN = os.getenv('API_TOKEN')
|
18 |
-
headers = {"Authorization": TOKEN}
|
19 |
-
|
20 |
-
|
21 |
-
# Функция для получения ключевых слов
|
22 |
-
def get_key_words(payload):
|
23 |
-
response = requests.post(API_URL_KEY, headers=headers, json=payload)
|
24 |
-
body = response.json()
|
25 |
-
if 'error' in body:
|
26 |
-
if 'estimated_time' in body:
|
27 |
-
time.sleep(body['estimated_time'])
|
28 |
-
else:
|
29 |
-
print(body)
|
30 |
-
return
|
31 |
-
get_key_words(payload)
|
32 |
-
return body
|
33 |
-
|
34 |
-
# Функция для перевода слова
|
35 |
-
def translate_key_words(payload):
|
36 |
-
response = requests.post(API_URL_TRA, headers=headers, json=payload)
|
37 |
-
body = response.json()
|
38 |
-
if 'error' in body:
|
39 |
-
if 'estimated_time' in body:
|
40 |
-
time.sleep(body['estimated_time'])
|
41 |
-
else:
|
42 |
-
print(body)
|
43 |
-
return
|
44 |
-
translate_key_words(payload)
|
45 |
-
return body
|
46 |
-
|
47 |
-
# Функция для составления конспекта
|
48 |
-
def make_summary(payload):
|
49 |
-
response = requests.post(API_URL_SUM, headers=headers, json=payload)
|
50 |
-
body = response.json()
|
51 |
-
if 'error' in body:
|
52 |
-
if 'estimated_time' in body:
|
53 |
-
time.sleep(body['estimated_time'])
|
54 |
-
else:
|
55 |
-
print(body)
|
56 |
-
return
|
57 |
-
make_summary(payload)
|
58 |
-
return body
|
59 |
-
|
60 |
-
|
61 |
-
# Очищаем список слов
|
62 |
-
def clean_list(words_list):
|
63 |
-
cleaned_words_list = []
|
64 |
-
for word in words_list:
|
65 |
-
word = word.lower()
|
66 |
-
word = re.sub(r"[^а-яА-Яa-zA-Z\s]", "", word)
|
67 |
-
word = word.lstrip()
|
68 |
-
word = word.rstrip()
|
69 |
-
cleaned_words_list.append(word)
|
70 |
-
return cleaned_words_list
|
71 |
-
|
72 |
-
|
73 |
-
# Настраиваем заголовок и название страницы
|
74 |
-
st.set_page_config(layout="wide", page_title="Students' Personal Assistant")
|
75 |
-
st.markdown(' # :female-student: Персональный помощник для студентов')
|
76 |
-
|
77 |
-
st.divider()
|
78 |
-
st.markdown('# :blue_book: Конспект на английском языке')
|
79 |
-
|
80 |
-
col1, col2 = st.columns(2)
|
81 |
-
text_from_tarea = col1.text_area('Введите тект статьи на английском языке', key='t_area', height=500)
|
82 |
-
|
83 |
-
button_start = st.button('Обработать текст')
|
84 |
-
key_words_list = []
|
85 |
-
|
86 |
-
|
87 |
-
if button_start:
|
88 |
-
with st.spinner('Составляем конспект...'):
|
89 |
-
# Составляем конспект
|
90 |
-
summary_text = make_summary({"inputs": text_from_tarea})
|
91 |
-
col2.text_area('Конспект статьи', height=500, key='sum_area', value=summary_text[0]['summary_text'])
|
92 |
-
|
93 |
-
with st.spinner('Получаем ключевые слова...'):
|
94 |
-
# Извлекаем ключевые слова
|
95 |
-
kew_words = get_key_words({"inputs": text_from_tarea})
|
96 |
-
for key_word in kew_words:
|
97 |
-
key_words_list.append(key_word['word'].lower())
|
98 |
-
|
99 |
-
sorted_keywords = set(sorted(key_words_list))
|
100 |
-
sorted_keywords = clean_list(sorted_keywords)
|
101 |
-
|
102 |
-
with st.spinner('Переводим ключевые слова...'):
|
103 |
-
# Переводим ключевые слова
|
104 |
-
translated_words_dict = translate_key_words({"inputs": sorted_keywords})
|
105 |
-
translated_words_list = [word['translation_text'] for word in translated_words_dict]
|
106 |
-
|
107 |
-
# Создаем карточки
|
108 |
-
cleaned_words_list_ru = clean_list(translated_words_list)
|
109 |
-
cards_list = []
|
110 |
-
for item1, item2 in zip(sorted_keywords, cleaned_words_list_ru):
|
111 |
-
cards_list.append([item1, item2])
|
112 |
-
|
113 |
-
st.success('Готово')
|
114 |
-
|
115 |
-
with st.spinner('Создаем WordCloud...'):
|
116 |
-
# Выводим Word Cloud
|
117 |
-
st.set_option('deprecation.showPyplotGlobalUse', False)
|
118 |
-
words_str = ', '.join(sorted_keywords)
|
119 |
-
w = WordCloud(background_color="white", width=1600, height=800).generate(words_str)
|
120 |
-
plt.imshow(w, interpolation='bilinear')
|
121 |
-
plt.imshow(w)
|
122 |
-
plt.axis("off")
|
123 |
-
st.pyplot()
|
124 |
-
|
125 |
-
# Выводим карточки
|
126 |
-
st.markdown('# :bookmark_tabs: Карточки из ключевых слов')
|
127 |
-
col1, col2, col3 = st.columns(3)
|
128 |
-
columns = [col1, col2, col3]
|
129 |
-
for index, el in enumerate(cards_list):
|
130 |
-
with columns[(index + 1) % 3]:
|
131 |
-
with st.container(border=True):
|
132 |
-
col4, col5 = st.columns([0.1, 0.9])
|
133 |
-
with col4:
|
134 |
-
st.write("# :flower_playing_cards:")
|
135 |
-
with col5:
|
136 |
-
st.write(f'## :green[{el[0]}]')
|
137 |
-
st.write(f'### :blue[{el[1]}]')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|