g19_project / pages /Project.py
Emil25's picture
Upload Project.py
92af0b1
raw
history blame
4.14 kB
import streamlit as st
import pandas as pd
import requests
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import os
import re
# Установка API URL и заголовков
API_URL_gen = "https://api-inference.huggingface.co/models/facebook/blenderbot-400M-distill"
API_URL_tra = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-en-ru"
API_URL_key = "https://api-inference.huggingface.co/models/ml6team/keyphrase-extraction-kbir-inspec"
API_URL_sum = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
headers = {"Authorization": os.getenv("api_token")}
# Функция для генерирования предложения
def generate_example(payload):
response = requests.post(API_URL_gen, headers=headers, json=payload)
return response.json()
# Функция для получения ключевых слов
def get_key_words(payload):
response = requests.post(API_URL_key, headers=headers, json=payload)
return response.json()
# Функция для перевода слова
def translate_key_words(payload):
response = requests.post(API_URL_tra, headers=headers, json=payload)
return response.json()
# Функция для составления конспекта
def make_summary(payload):
response = requests.post(API_URL_sum, headers=headers, json=payload)
return response.json()
# Очищаем список слов
def clean_list(words_list):
cleaned_words_list = []
for word in words_list:
word = word.lower()
word =re.sub(r"[^а-яА-Яa-zA-Z\s]", "", word)
word = word.lstrip()
word = word.rstrip()
cleaned_words_list.append(word)
return cleaned_words_list
# Настраеваем заголовок и название страницы
st.set_page_config(layout="wide", page_title="Students' Personal Assistant")
st.markdown(' # :female-student: Персональный помощник для студентов')
st.divider()
st.markdown('## :flower_playing_cards: Как назвать?')
st.markdown('# :bookmark_tabs: :bookmark_tabs: :bookmark_tabs: :bookmark_tabs: ')
col1, col2 = st.columns(2)
text_from_tarea = col1.text_area('Введите тект статьи на английском языке', height=500)
button_start = st.button('Обработать текст')
key_words_list = []
if button_start:
with st.spinner('...'):
summary_text = make_summary({"inputs": text_from_tarea})
col2.text_area('Конспект статьи', height=500, value=summary_text[0]['summary_text'])
kew_words = get_key_words({ "inputs": text_from_tarea,})
for key_word in kew_words :
key_words_list.append(key_word['word'].lower())
sorted_keywords = set(sorted(key_words_list))
sorted_keywords = clean_list(sorted_keywords)
translated_words_list = []
for key_word in sorted_keywords:
res = translate_key_words({"inputs": key_word,})
translated_words_list.append(res[0]['translation_text'])
cleaned_words_list_ru = clean_list(translated_words_list)
cards_list = []
for item1, item2 in zip(sorted_keywords, cleaned_words_list_ru):
cards_list.append([item1, item2])
# Преобразуем полученные данные в DataFrame
#cards_df = pd.DataFrame(cards_list, columns=['word', 'translated', 'example'])
st.success('Готово')
# Выводим Word Cloud
st.set_option('deprecation.showPyplotGlobalUse', False)
words_str = ', '.join(sorted_keywords)
w = WordCloud(background_color="white").generate(words_str)
plt.imshow(w, interpolation='bilinear')
plt.imshow(w)
plt.axis("off")
st.pyplot()
# Выводим карточки
for el in cards_list:
with st.chat_message("assistant"):
#st.divider()
st.markdown('# :flower_playing_cards:')
st.markdown(f'# :green[{el[0]}]')
st.markdown(f'## :blue[{el[1]}]')
st.divider()