Spaces:
Running
Running
import os | |
import gradio as gr | |
from groq import Groq | |
from dotenv import load_dotenv | |
import json | |
from deep_translator import GoogleTranslator | |
load_dotenv() | |
api1 = os.getenv("GROQ_API_KEY") | |
api2 = os.getenv("Groq_key") | |
api3 = os.getenv("GRoq_key") | |
# api2 = os.getenv("Groq_key") | |
# api2 = os.getenv("Groq_key") | |
# api2 = os.getenv("Groq_key") | |
# api2 = os.getenv("Groq_key") | |
apis = [ | |
api1, | |
api2, | |
api3, | |
] | |
def make_call(data): | |
print(data) | |
newdata = data.replace("'", '"') | |
items = json.loads(newdata) | |
language = items['lang'] | |
query = items['text'] | |
query = query.lower() | |
answer = None | |
while True: | |
for api in apis: | |
client = Groq( | |
api_key=api, | |
) # Configure the model with the API key | |
# query = st.text_input("Enter your query") | |
prmptquery= f"Answer this query in a short message with wisdom, love and compassion, in context to bhagwat geeta, that feels like chatting to a person and provide references of shloks from chapters of bhagwat geeta which is relevant to the query. keep the answer short, precise and simple. Query= {query}" | |
try: | |
response = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": prmptquery, | |
} | |
], | |
model="mixtral-8x7b-32768", | |
) | |
answer = response.choices[0].message.content | |
translated = GoogleTranslator(source='auto', target=language).translate(answer) | |
except Exception as e: | |
print(f"API call failed for: {e}") | |
if answer: | |
break | |
if answer: | |
break | |
respo = { | |
"message": translated, | |
"action": "nothing", | |
"function": "nothing", | |
} | |
print(translated) | |
return json.dumps(respo) | |
gradio_interface = gr.Interface(fn=make_call, inputs="text", outputs="text") | |
gradio_interface.launch() | |
# print(chat_completion) | |
# # Text to 3D | |
# import streamlit as st | |
# import torch | |
# from diffusers import ShapEPipeline | |
# from diffusers.utils import export_to_gif | |
# # Model loading (Ideally done once at the start for efficiency) | |
# ckpt_id = "openai/shap-e" | |
# @st.cache_resource # Caches the model for faster subsequent runs | |
# def load_model(): | |
# return ShapEPipeline.from_pretrained(ckpt_id).to("cuda") | |
# pipe = load_model() | |
# # App Title | |
# st.title("Shark 3D Image Generator") | |
# # User Inputs | |
# prompt = st.text_input("Enter your prompt:", "a shark") | |
# guidance_scale = st.slider("Guidance Scale", 0.0, 20.0, 15.0, step=0.5) | |
# # Generate and Display Images | |
# if st.button("Generate"): | |
# with st.spinner("Generating images..."): | |
# images = pipe( | |
# prompt, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=64, | |
# size=256, | |
# ).images | |
# gif_path = export_to_gif(images, "shark_3d.gif") | |
# st.image(images[0]) # Display the first image | |
# st.success("GIF saved as shark_3d.gif") |