Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel, PeftConfig | |
def load_model_with_lora(base_model_name, lora_path): | |
""" | |
Load base model and merge it with LoRA adapter | |
""" | |
# Load base model | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_name, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
# Load and merge LoRA adapter | |
model = PeftModel.from_pretrained(base_model, lora_path) | |
model = model.merge_and_unload() # Merge adapter weights with base model | |
return model | |
def load_tokenizer(base_model_name): | |
""" | |
Load tokenizer for the base model | |
""" | |
return AutoTokenizer.from_pretrained(base_model_name) | |
def generate_code(prompt, model, tokenizer, max_length=512, temperature=0.7): | |
""" | |
Generate code based on the prompt | |
""" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_length=max_length, | |
temperature=temperature, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Initialize model and tokenizer | |
BASE_MODEL_NAME = "unsloth/Llama-3.2-3B-bnb-4bit" # Replace with your base model name | |
LORA_PATH = "EmTpro01/Llama-3.2-3B-peft" # Replace with your LoRA adapter path | |
model = load_model_with_lora(BASE_MODEL_NAME, LORA_PATH) | |
tokenizer = load_tokenizer(BASE_MODEL_NAME) | |
# Create Gradio interface | |
def gradio_generate(prompt, temperature, max_length): | |
return generate_code(prompt, model, tokenizer, max_length, temperature) | |
demo = gr.Interface( | |
fn=gradio_generate, | |
inputs=[ | |
gr.Textbox( | |
lines=5, | |
placeholder="Enter your code generation prompt here...", | |
label="Prompt" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=64, | |
maximum=2048, | |
value=512, | |
step=64, | |
label="Max Length" | |
) | |
], | |
outputs=gr.Code(language="python", label="Generated Code"), | |
title="Code Generation with LoRA", | |
description="Enter a prompt to generate code using a fine-tuned model with LoRA adapters", | |
) | |
if __name__ == "__main__": | |
demo.launch() |