Upload 3 files
Browse files- app.py +165 -0
- constants.py +9 -0
- ingest.py +27 -0
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import base64
|
4 |
+
import time
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
from transformers import pipeline
|
7 |
+
import torch
|
8 |
+
import textwrap
|
9 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
12 |
+
from langchain.vectorstores import Chroma
|
13 |
+
from langchain.llms import HuggingFacePipeline
|
14 |
+
from langchain.chains import RetrievalQA
|
15 |
+
from constants import CHROMA_SETTINGS
|
16 |
+
from streamlit_chat import message
|
17 |
+
|
18 |
+
st.set_page_config(layout="wide")
|
19 |
+
|
20 |
+
checkpoint = "LaMini-T5-738M"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
22 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
23 |
+
checkpoint,
|
24 |
+
device_map="auto",
|
25 |
+
torch_dtype = torch.float32
|
26 |
+
)
|
27 |
+
|
28 |
+
persist_directory = "db"
|
29 |
+
|
30 |
+
@st.cache_resource
|
31 |
+
def data_ingestion():
|
32 |
+
for root, dirs, files in os.walk("docs"):
|
33 |
+
for file in files:
|
34 |
+
if file.endswith(".pdf"):
|
35 |
+
print(file)
|
36 |
+
loader = PDFMinerLoader(os.path.join(root, file))
|
37 |
+
documents = loader.load()
|
38 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
39 |
+
texts = text_splitter.split_documents(documents)
|
40 |
+
#create embeddings here
|
41 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
42 |
+
#create vector store here
|
43 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
44 |
+
db.persist()
|
45 |
+
db=None
|
46 |
+
|
47 |
+
@st.cache_resource
|
48 |
+
def llm_pipeline():
|
49 |
+
pipe = pipeline(
|
50 |
+
'text2text-generation',
|
51 |
+
model = base_model,
|
52 |
+
tokenizer = tokenizer,
|
53 |
+
max_length = 256,
|
54 |
+
do_sample = True,
|
55 |
+
temperature = 0.3,
|
56 |
+
top_p= 0.95
|
57 |
+
)
|
58 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
59 |
+
return local_llm
|
60 |
+
|
61 |
+
@st.cache_resource
|
62 |
+
def qa_llm():
|
63 |
+
llm = llm_pipeline()
|
64 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
65 |
+
db = Chroma(persist_directory="db", embedding_function = embeddings, client_settings=CHROMA_SETTINGS)
|
66 |
+
retriever = db.as_retriever()
|
67 |
+
qa = RetrievalQA.from_chain_type(
|
68 |
+
llm = llm,
|
69 |
+
chain_type = "stuff",
|
70 |
+
retriever = retriever,
|
71 |
+
return_source_documents=True
|
72 |
+
)
|
73 |
+
return qa
|
74 |
+
|
75 |
+
def process_answer(instruction):
|
76 |
+
response = ''
|
77 |
+
instruction = instruction
|
78 |
+
qa = qa_llm()
|
79 |
+
generated_text = qa(instruction)
|
80 |
+
answer = generated_text['result']
|
81 |
+
return answer
|
82 |
+
|
83 |
+
def get_file_size(file):
|
84 |
+
file.seek(0, os.SEEK_END)
|
85 |
+
file_size = file.tell()
|
86 |
+
file.seek(0)
|
87 |
+
return file_size
|
88 |
+
|
89 |
+
@st.cache_data
|
90 |
+
#function to display the PDF of a given file
|
91 |
+
def displayPDF(file):
|
92 |
+
# Opening file from file path
|
93 |
+
with open(file, "rb") as f:
|
94 |
+
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
|
95 |
+
|
96 |
+
# Embedding PDF in HTML
|
97 |
+
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
|
98 |
+
|
99 |
+
# Displaying File
|
100 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
101 |
+
|
102 |
+
# Display conversation history using Streamlit messages
|
103 |
+
def display_conversation(history):
|
104 |
+
for i in range(len(history["generated"])):
|
105 |
+
message(history["past"][i], is_user=True, key=str(i) + "_user")
|
106 |
+
message(history["generated"][i],key=str(i))
|
107 |
+
|
108 |
+
def main():
|
109 |
+
st.markdown("<h1 style='text-align: center; color: blue;'>ChatPDFv2</h1>", unsafe_allow_html=True)
|
110 |
+
|
111 |
+
st.markdown("<h2 style='text-align: center; color:red;'>Upload your PDF</h2>", unsafe_allow_html=True)
|
112 |
+
|
113 |
+
uploaded_file = st.file_uploader("", type=["pdf"])
|
114 |
+
|
115 |
+
if uploaded_file is not None:
|
116 |
+
file_details = {
|
117 |
+
"Filename": uploaded_file.name,
|
118 |
+
"File size": get_file_size(uploaded_file)
|
119 |
+
}
|
120 |
+
filepath = "docs/"+uploaded_file.name
|
121 |
+
with open(filepath, "wb") as temp_file:
|
122 |
+
temp_file.write(uploaded_file.read())
|
123 |
+
|
124 |
+
col1, col2= st.columns([1,2])
|
125 |
+
with col1:
|
126 |
+
st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
|
127 |
+
st.json(file_details)
|
128 |
+
st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
|
129 |
+
pdf_view = displayPDF(filepath)
|
130 |
+
|
131 |
+
with col2:
|
132 |
+
with st.spinner('Embeddings are in process...'):
|
133 |
+
ingested_data = data_ingestion()
|
134 |
+
st.success('Embeddings are created successfully!')
|
135 |
+
st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)
|
136 |
+
|
137 |
+
|
138 |
+
user_input = st.text_input("", key="input")
|
139 |
+
|
140 |
+
# Initialize session state for generated responses and past messages
|
141 |
+
if "generated" not in st.session_state:
|
142 |
+
st.session_state["generated"] = ["I am ready to help you"]
|
143 |
+
if "past" not in st.session_state:
|
144 |
+
st.session_state["past"] = ["Hey there!"]
|
145 |
+
|
146 |
+
# Search the database for a response based on user input and update session state
|
147 |
+
if user_input:
|
148 |
+
answer = process_answer({'query': user_input})
|
149 |
+
st.session_state["past"].append(user_input)
|
150 |
+
response = answer
|
151 |
+
st.session_state["generated"].append(response)
|
152 |
+
|
153 |
+
# Display conversation history using Streamlit messages
|
154 |
+
if st.session_state["generated"]:
|
155 |
+
display_conversation(st.session_state)
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
if __name__ == "__main__":
|
164 |
+
main()
|
165 |
+
|
constants.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from chromadb.config import Settings
|
3 |
+
|
4 |
+
#Define the chroma settings
|
5 |
+
CHROMA_SETTINGS = Settings(
|
6 |
+
chroma_db_impl = 'duckdb+parquet',
|
7 |
+
persist_directory = "db",
|
8 |
+
anonymized_telemetry = False
|
9 |
+
)
|
ingest.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
import os
|
6 |
+
from constants import CHROMA_SETTINGS
|
7 |
+
|
8 |
+
persist_directory = "db"
|
9 |
+
|
10 |
+
def main():
|
11 |
+
for root, dirs, files in os.walk("docs"):
|
12 |
+
for file in files:
|
13 |
+
if file.endswith(".pdf"):
|
14 |
+
print(file)
|
15 |
+
loader = PDFMinerLoader(os.path.join(root, file))
|
16 |
+
documents = loader.load()
|
17 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
18 |
+
texts = text_splitter.split_documents(documents)
|
19 |
+
#create embeddings here
|
20 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
21 |
+
#create vector store here
|
22 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
23 |
+
db.persist()
|
24 |
+
db=None
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
main()
|