Upload 3 files
Browse files- resources/corpus_embeddings_ms.pth +3 -0
- resources/functions.py +37 -0
- resources/parcing.ipynb +0 -0
resources/corpus_embeddings_ms.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0d2d9fe8e6c6d15b65b99674572ec8b6a94279bbc16c4c6d06a9244b2be19a1
|
3 |
+
size 32710365
|
resources/functions.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
import pandas as pd
|
4 |
+
import nltk
|
5 |
+
import pymorphy2
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
nltk.download('stopwords')
|
8 |
+
from sentence_transformers import util
|
9 |
+
|
10 |
+
stop_words = set(stopwords.words('russian'))
|
11 |
+
morph = pymorphy2.MorphAnalyzer()
|
12 |
+
|
13 |
+
def data_preprocessing_hard(text: str) -> str:
|
14 |
+
text = str(text)
|
15 |
+
text = text.lower()
|
16 |
+
text = re.sub('<.*?>', '', text)
|
17 |
+
text = re.sub(r'[^а-яА-Я\s]', '', text)
|
18 |
+
text = ''.join([c for c in text if c not in string.punctuation])
|
19 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
20 |
+
# text = ''.join([char for char in text if not char.isdigit()])
|
21 |
+
text = ' '.join([morph.parse(word)[0].normal_form for word in text.split()])
|
22 |
+
return text
|
23 |
+
|
24 |
+
def filter(df: pd.DataFrame, ganre_list: list):
|
25 |
+
filtered_df = df[df['ganres'].apply(lambda x: any(g in ganre_list for g in(x)))]
|
26 |
+
filt_ind = filtered_df.index.to_list()
|
27 |
+
return filt_ind
|
28 |
+
|
29 |
+
def recommend(model, text: str, embeddings, top_k):
|
30 |
+
query_embeddings = model.encode([text], convert_to_tensor=True)
|
31 |
+
embeddings = embeddings.to("cpu")
|
32 |
+
# embeddings = util.normalize_embeddings(embeddings)
|
33 |
+
|
34 |
+
query_embeddings = query_embeddings.to("cpu")
|
35 |
+
# query_embeddings = util.normalize_embeddings(query_embeddings)
|
36 |
+
hits = util.semantic_search(query_embeddings, embeddings, top_k=top_k)#, score_function=util.dot_score)
|
37 |
+
return hits
|
resources/parcing.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|