Spaces:
Sleeping
Sleeping
import re | |
import torch | |
from fastapi import FastAPI, File, UploadFile | |
from fastapi.middleware.cors import CORSMiddleware | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
from io import BytesIO | |
origins = [ | |
"https://duithive.vercel.app", | |
"https://staging-duithive.vercel.app", | |
"http://localhost:3000", | |
] | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2", use_fast=False) | |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
# def generateOutput(fileData): | |
# pil_image = Image.open(BytesIO(fileData)) | |
# resized_image = pil_image.resize((800, 600)).convert('RGB') | |
# rgb_image = Image.new('RGB', resized_image.size) | |
# rgb_image.paste(resized_image) | |
# output_buffer = BytesIO() | |
# rgb_image.save(output_buffer, format="JPEG", quality = 100) | |
# jpeg_image = Image.open(BytesIO(output_buffer.getvalue())) | |
# pixel_values = processor(jpeg_image, return_tensors="pt").pixel_values | |
# outputs = model.generate( | |
# pixel_values.to(device), | |
# decoder_input_ids=decoder_input_ids.to(device), | |
# max_length=model.decoder.config.max_position_embeddings, | |
# pad_token_id=processor.tokenizer.pad_token_id, | |
# eos_token_id=processor.tokenizer.eos_token_id, | |
# use_cache=True, | |
# bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
# return_dict_in_generate=True, | |
# ) | |
# return outputs | |
def generateOutput(fileData): | |
pil_image = Image.open(BytesIO(fileData)) | |
pil_image.resize((800, 600)) | |
pixel_values = processor(pil_image, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
return outputs | |
async def analyze_image(file: UploadFile = File(...)): | |
content = await file.read() | |
outputs = generateOutput(content) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
return processor.token2json(sequence) | |