magma / app.py
akhaliq's picture
akhaliq HF staff
only return output enable queue and cache
11c80e1
raw
history blame
1.91 kB
import os
os.system("pip install deepspeed")
os.system("pip freeze")
import gradio as gr
import re
from magma import Magma
from magma.image_input import ImageInput
from huggingface_hub import hf_hub_url, cached_download
checkpoint_url = hf_hub_url(repo_id="osanseviero/magma", filename="model.pt")
checkpoint_path = cached_download(checkpoint_url)
model = Magma.from_checkpoint(
config_path = "configs/MAGMA_v1.yml",
checkpoint_path = checkpoint_path,
device = 'cuda:0'
)
def generate(image,context, length, temperature, top_k):
# context = context.strip()
# url_regex = r'https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)'
# lines = context.split('\n')
# inputs = []
# for line in lines:
# if re.match(url_regex, line):
# try:
# inputs.append(ImageInput(line))
# except Exception as e:
# return str(e)
# else:
# inputs.append(line)
inputs =[
## supports urls and path/to/image
ImageInput(image),
context
]
## returns a tensor of shape: (1, 149, 4096)
embeddings = model.preprocess_inputs(inputs)
## returns a list of length embeddings.shape[0] (batch size)
output = model.generate(
embeddings = embeddings,
max_steps = length,
temperature = (0.01 if temperature == 0 else temperature),
top_k = top_k
)
return output[0]
iface = gr.Interface(
fn=generate,
inputs=[
[gr.inputs.Image(type="filepath"),gr.inputs.Textbox(
label="Prompt:",
default="Describe the painting:",
lines=7)],
gr.inputs.Slider(minimum=1, maximum=100, default=15, step=1, label="Output tokens:"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.7, label='Temperature'),
gr.inputs.Slider(minimum=0, maximum=100, default=0, step=1, label='Top K')
],
outputs=["textbox"]
).launch(enable_queue=True,cache_examples=True)