ElenaRyumina
commited on
Commit
β’
2f8c080
1
Parent(s):
292cafa
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ with open(model_path, 'wb') as file:
|
|
16 |
for chunk in response.iter_content(chunk_size=8192):
|
17 |
file.write(chunk)
|
18 |
|
19 |
-
pth_model = torch.jit.load(model_path)
|
20 |
pth_model.eval()
|
21 |
|
22 |
DICT_EMO = {0: 'Neutral', 1: 'Happiness', 2: 'Sadness', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger'}
|
@@ -44,7 +44,7 @@ def pth_processing(fp):
|
|
44 |
])
|
45 |
img = img.resize((224, 224), Image.Resampling.NEAREST)
|
46 |
img = ttransform(img)
|
47 |
-
img = torch.unsqueeze(img, 0)
|
48 |
return img
|
49 |
return get_img_torch(fp)
|
50 |
|
@@ -89,7 +89,7 @@ def predict(inp):
|
|
89 |
startX, startY, endX, endY = get_box(fl, w, h)
|
90 |
cur_face = inp[startY:endY, startX: endX]
|
91 |
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
92 |
-
prediction = torch.nn.functional.softmax(pth_model(cur_face_n), dim=1).
|
93 |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
94 |
|
95 |
return cur_face, confidences
|
|
|
16 |
for chunk in response.iter_content(chunk_size=8192):
|
17 |
file.write(chunk)
|
18 |
|
19 |
+
pth_model = torch.jit.load(model_path)
|
20 |
pth_model.eval()
|
21 |
|
22 |
DICT_EMO = {0: 'Neutral', 1: 'Happiness', 2: 'Sadness', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger'}
|
|
|
44 |
])
|
45 |
img = img.resize((224, 224), Image.Resampling.NEAREST)
|
46 |
img = ttransform(img)
|
47 |
+
img = torch.unsqueeze(img, 0)
|
48 |
return img
|
49 |
return get_img_torch(fp)
|
50 |
|
|
|
89 |
startX, startY, endX, endY = get_box(fl, w, h)
|
90 |
cur_face = inp[startY:endY, startX: endX]
|
91 |
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
92 |
+
prediction = torch.nn.functional.softmax(pth_model(cur_face_n), dim=1).detach().numpy()[0]
|
93 |
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
94 |
|
95 |
return cur_face, confidences
|