Spaces:
Running
Running
""" | |
File: model.py | |
Author: Elena Ryumina and Dmitry Ryumin | |
Description: This module provides model architectures. | |
License: MIT License | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
import numpy as np | |
from transformers.models.wav2vec2.modeling_wav2vec2 import ( | |
Wav2Vec2Model, | |
Wav2Vec2PreTrainedModel, | |
) | |
from typing import Optional | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, in_channels, out_channels, i_downsample=None, stride=1): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False) | |
self.batch_norm1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same', bias=False) | |
self.batch_norm2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99) | |
self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0, bias=False) | |
self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion, eps=0.001, momentum=0.99) | |
self.i_downsample = i_downsample | |
self.stride = stride | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
identity = x.clone() | |
x = self.relu(self.batch_norm1(self.conv1(x))) | |
x = self.relu(self.batch_norm2(self.conv2(x))) | |
x = self.conv3(x) | |
x = self.batch_norm3(x) | |
#downsample if needed | |
if self.i_downsample is not None: | |
identity = self.i_downsample(identity) | |
#add identity | |
x+=identity | |
x=self.relu(x) | |
return x | |
class Conv2dSame(torch.nn.Conv2d): | |
def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int: | |
return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
ih, iw = x.size()[-2:] | |
pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0]) | |
pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1]) | |
if pad_h > 0 or pad_w > 0: | |
x = F.pad( | |
x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] | |
) | |
return F.conv2d( | |
x, | |
self.weight, | |
self.bias, | |
self.stride, | |
self.padding, | |
self.dilation, | |
self.groups, | |
) | |
class ResNet(nn.Module): | |
def __init__(self, ResBlock, layer_list, num_classes, num_channels=3): | |
super(ResNet, self).__init__() | |
self.in_channels = 64 | |
self.conv_layer_s2_same = Conv2dSame(num_channels, 64, 7, stride=2, groups=1, bias=False) | |
self.batch_norm1 = nn.BatchNorm2d(64, eps=0.001, momentum=0.99) | |
self.relu = nn.ReLU() | |
self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2) | |
self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64, stride=1) | |
self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2) | |
self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2) | |
self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2) | |
self.avgpool = nn.AdaptiveAvgPool2d((1,1)) | |
self.fc1 = nn.Linear(512*ResBlock.expansion, 512) | |
self.relu1 = nn.ReLU() | |
self.fc2 = nn.Linear(512, num_classes) | |
def extract_features(self, x): | |
x = self.relu(self.batch_norm1(self.conv_layer_s2_same(x))) | |
x = self.max_pool(x) | |
# print(x.shape) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avgpool(x) | |
x = x.reshape(x.shape[0], -1) | |
x = self.fc1(x) | |
return x | |
def forward(self, x): | |
x = self.extract_features(x) | |
x = self.relu1(x) | |
x = self.fc2(x) | |
return x | |
def _make_layer(self, ResBlock, blocks, planes, stride=1): | |
ii_downsample = None | |
layers = [] | |
if stride != 1 or self.in_channels != planes*ResBlock.expansion: | |
ii_downsample = nn.Sequential( | |
nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride, bias=False, padding=0), | |
nn.BatchNorm2d(planes*ResBlock.expansion, eps=0.001, momentum=0.99) | |
) | |
layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride)) | |
self.in_channels = planes*ResBlock.expansion | |
for i in range(blocks-1): | |
layers.append(ResBlock(self.in_channels, planes)) | |
return nn.Sequential(*layers) | |
def ResNet50(num_classes, channels=3): | |
return ResNet(Bottleneck, [3,4,6,3], num_classes, channels) | |
class LSTMPyTorch(nn.Module): | |
def __init__(self): | |
super(LSTMPyTorch, self).__init__() | |
self.lstm1 = nn.LSTM(input_size=512, hidden_size=512, batch_first=True, bidirectional=False) | |
self.lstm2 = nn.LSTM(input_size=512, hidden_size=256, batch_first=True, bidirectional=False) | |
self.fc = nn.Linear(256, 7) | |
# self.softmax = nn.Softmax(dim=1) | |
def forward(self, x): | |
x, _ = self.lstm1(x) | |
x, _ = self.lstm2(x) | |
x = self.fc(x[:, -1, :]) | |
# x = self.softmax(x) | |
return x | |
class ExprModelV3(Wav2Vec2PreTrainedModel): | |
def __init__(self, config) -> None: | |
super().__init__(config) | |
self.config = config | |
self.wav2vec2 = Wav2Vec2Model(config) | |
self.tl1 = TransformerLayer( | |
input_dim=1024, num_heads=32, dropout=0.1, positional_encoding=True | |
) | |
self.tl2 = TransformerLayer( | |
input_dim=1024, num_heads=16, dropout=0.1, positional_encoding=True | |
) | |
self.f_size = 1024 | |
self.time_downsample = torch.nn.Sequential( | |
torch.nn.Conv1d( | |
self.f_size, self.f_size, kernel_size=5, stride=3, dilation=2 | |
), | |
torch.nn.BatchNorm1d(self.f_size), | |
torch.nn.MaxPool1d(5), | |
torch.nn.ReLU(), | |
torch.nn.Conv1d(self.f_size, self.f_size, kernel_size=3), | |
torch.nn.BatchNorm1d(self.f_size), | |
torch.nn.AdaptiveAvgPool1d(1), | |
torch.nn.ReLU(), | |
) | |
self.feature_downsample = nn.Linear(self.f_size, 8) | |
self.init_weights() | |
self.unfreeze_last_n_blocks(4) | |
def freeze_conv_only(self): | |
# freeze conv | |
for param in self.wav2vec2.feature_extractor.conv_layers.parameters(): | |
param.requires_grad = False | |
def unfreeze_last_n_blocks(self, num_blocks: int) -> None: | |
# freeze all wav2vec | |
for param in self.wav2vec2.parameters(): | |
param.requires_grad = False | |
# unfreeze last n transformer blocks | |
for i in range(0, num_blocks): | |
for param in self.wav2vec2.encoder.layers[-1 * (i + 1)].parameters(): | |
param.requires_grad = True | |
def forward(self, x): | |
x = self.wav2vec2(x)[0] | |
x = self.tl1(query=x, key=x, value=x) | |
x = self.tl2(query=x, key=x, value=x) | |
x = x.permute(0, 2, 1) | |
x = self.time_downsample(x) | |
x = x.squeeze() | |
x = self.feature_downsample(x) | |
return x | |
class ScaledDotProductAttention_MultiHead(nn.Module): | |
def __init__(self): | |
super(ScaledDotProductAttention_MultiHead, self).__init__() | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, query, key, value, mask=None): | |
if mask is not None: | |
raise ValueError("Mask is not supported yet") | |
# key, query, value shapes: [batch_size, num_heads, seq_len, dim] | |
emb_dim = key.shape[-1] | |
# Calculate attention weights | |
attention_weights = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt( | |
emb_dim | |
) | |
# masking | |
if mask is not None: | |
raise ValueError("Mask is not supported yet") | |
# Softmax | |
attention_weights = self.softmax(attention_weights) | |
# modify value | |
value = torch.matmul(attention_weights, value) | |
return value, attention_weights | |
class PositionWiseFeedForward(nn.Module): | |
def __init__(self, input_dim, hidden_dim, dropout: float = 0.1): | |
super().__init__() | |
self.layer_1 = nn.Linear(input_dim, hidden_dim) | |
self.layer_2 = nn.Linear(hidden_dim, input_dim) | |
self.layer_norm = nn.LayerNorm(input_dim) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
# feed-forward network | |
x = self.layer_1(x) | |
x = self.dropout(x) | |
x = F.relu(x) | |
x = self.layer_2(x) | |
return x | |
class Add_and_Norm(nn.Module): | |
def __init__(self, input_dim, dropout: Optional[float] = 0.1): | |
super().__init__() | |
self.layer_norm = nn.LayerNorm(input_dim) | |
if dropout is not None: | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x1, residual): | |
x = x1 | |
# apply dropout of needed | |
if hasattr(self, "dropout"): | |
x = self.dropout(x) | |
# add and then norm | |
x = x + residual | |
x = self.layer_norm(x) | |
return x | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, input_dim, num_heads, dropout: Optional[float] = 0.1): | |
super().__init__() | |
self.input_dim = input_dim | |
self.num_heads = num_heads | |
if input_dim % num_heads != 0: | |
raise ValueError("input_dim must be divisible by num_heads") | |
self.head_dim = input_dim // num_heads | |
self.dropout = dropout | |
# initialize weights | |
self.query_w = nn.Linear(input_dim, self.num_heads * self.head_dim, bias=False) | |
self.keys_w = nn.Linear(input_dim, self.num_heads * self.head_dim, bias=False) | |
self.values_w = nn.Linear(input_dim, self.num_heads * self.head_dim, bias=False) | |
self.ff_layer_after_concat = nn.Linear( | |
self.num_heads * self.head_dim, input_dim, bias=False | |
) | |
self.attention = ScaledDotProductAttention_MultiHead() | |
if self.dropout is not None: | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, queries, keys, values, mask=None): | |
# query, keys, values shapes: [batch_size, seq_len, input_dim] | |
batch_size, len_query, len_keys, len_values = ( | |
queries.size(0), | |
queries.size(1), | |
keys.size(1), | |
values.size(1), | |
) | |
# linear transformation before attention | |
queries = ( | |
self.query_w(queries) | |
.view(batch_size, len_query, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
) # [batch_size, num_heads, seq_len, dim] | |
keys = ( | |
self.keys_w(keys) | |
.view(batch_size, len_keys, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
) # [batch_size, num_heads, seq_len, dim] | |
values = ( | |
self.values_w(values) | |
.view(batch_size, len_values, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
) # [batch_size, num_heads, seq_len, dim] | |
# attention itself | |
values, attention_weights = self.attention( | |
queries, keys, values, mask=mask | |
) # values shape:[batch_size, num_heads, seq_len, dim] | |
# concatenation | |
out = ( | |
values.transpose(1, 2) | |
.contiguous() | |
.view(batch_size, len_values, self.num_heads * self.head_dim) | |
) # [batch_size, seq_len, num_heads * dim = input_dim] | |
# go through last linear layer | |
out = self.ff_layer_after_concat(out) | |
return out | |
class EncoderLayer(nn.Module): | |
def __init__( | |
self, | |
input_dim, | |
num_heads, | |
dropout: Optional[float] = 0.1, | |
positional_encoding: bool = True, | |
): | |
super(EncoderLayer, self).__init__() | |
self.positional_encoding = positional_encoding | |
self.input_dim = input_dim | |
self.num_heads = num_heads | |
self.head_dim = input_dim // num_heads | |
self.dropout = dropout | |
# initialize layers | |
self.self_attention = MultiHeadAttention(input_dim, num_heads, dropout=dropout) | |
self.feed_forward = PositionWiseFeedForward( | |
input_dim, input_dim, dropout=dropout | |
) | |
self.add_norm_after_attention = Add_and_Norm(input_dim, dropout=dropout) | |
self.add_norm_after_ff = Add_and_Norm(input_dim, dropout=dropout) | |
# calculate positional encoding | |
if self.positional_encoding: | |
self.positional_encoding = PositionalEncoding(input_dim) | |
def forward(self, x): | |
# x shape: [batch_size, seq_len, input_dim] | |
# positional encoding | |
if self.positional_encoding: | |
x = self.positional_encoding(x) | |
# multi-head attention | |
residual = x | |
x = self.self_attention(x, x, x) | |
x = self.add_norm_after_attention(x, residual) | |
# feed forward | |
residual = x | |
x = self.feed_forward(x) | |
x = self.add_norm_after_ff(x, residual) | |
return x | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) | |
) | |
pe = torch.zeros(max_len, 1, d_model) | |
pe[:, 0, 0::2] = torch.sin(position * div_term) | |
pe[:, 0, 1::2] = torch.cos(position * div_term) | |
pe = pe.permute( | |
1, 0, 2 | |
) # [seq_len, batch_size, embedding_dim] -> [batch_size, seq_len, embedding_dim] | |
self.register_buffer("pe", pe) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
x: Tensor, shape [batch_size, seq_len, embedding_dim] | |
""" | |
x = x + self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class TransformerLayer(nn.Module): | |
def __init__( | |
self, | |
input_dim, | |
num_heads, | |
dropout: Optional[float] = 0.1, | |
positional_encoding: bool = True, | |
): | |
super(TransformerLayer, self).__init__() | |
self.positional_encoding = positional_encoding | |
self.input_dim = input_dim | |
self.num_heads = num_heads | |
self.head_dim = input_dim // num_heads | |
self.dropout = dropout | |
# initialize layers | |
self.self_attention = MultiHeadAttention(input_dim, num_heads, dropout=dropout) | |
self.feed_forward = PositionWiseFeedForward( | |
input_dim, input_dim, dropout=dropout | |
) | |
self.add_norm_after_attention = Add_and_Norm(input_dim, dropout=dropout) | |
self.add_norm_after_ff = Add_and_Norm(input_dim, dropout=dropout) | |
# calculate positional encoding | |
if self.positional_encoding: | |
self.positional_encoding = PositionalEncoding(input_dim) | |
def forward(self, key, value, query, mask=None): | |
# key, value, and query shapes: [batch_size, seq_len, input_dim] | |
# positional encoding | |
if self.positional_encoding: | |
key = self.positional_encoding(key) | |
value = self.positional_encoding(value) | |
query = self.positional_encoding(query) | |
# multi-head attention | |
residual = query | |
x = self.self_attention(queries=query, keys=key, values=value, mask=mask) | |
x = self.add_norm_after_attention(x, residual) | |
# feed forward | |
residual = x | |
x = self.feed_forward(x) | |
x = self.add_norm_after_ff(x, residual) | |
return x | |