Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
|
4 |
import numpy as np
|
5 |
-
from tensorflow.keras.preprocessing import image
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def predict_input_image(img):
|
10 |
-
|
11 |
-
img =
|
12 |
-
|
13 |
-
#
|
14 |
model = tf.keras.models.load_model('Tumor_Model.h5')
|
|
|
|
|
15 |
prediction = model.predict(img)
|
16 |
-
result = 'No Tumor Detected' if prediction[0][0] > 0.
|
17 |
|
18 |
return f"Prediction: {result}"
|
19 |
|
20 |
-
|
21 |
-
|
22 |
# Define Gradio interface
|
23 |
iface = gr.Interface(
|
24 |
fn=predict_input_image,
|
25 |
-
inputs=
|
26 |
outputs="text",
|
27 |
)
|
28 |
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
+
import cv2
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
+
def preprocess_image(img):
|
7 |
+
# Resize the image to the target size (256x256)
|
8 |
+
img = cv2.resize(img, (256, 256))
|
9 |
+
|
10 |
+
# Center crop to 224x224
|
11 |
+
h, w, _ = img.shape
|
12 |
+
crop_start_x = (w - 224) // 2
|
13 |
+
crop_start_y = (h - 224) // 2
|
14 |
+
img = img[crop_start_y:crop_start_y + 224, crop_start_x:crop_start_x + 224]
|
15 |
|
16 |
+
# Normalize the image
|
17 |
+
img = img / 255.0
|
18 |
+
|
19 |
+
# Convert BGR to RGB
|
20 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
21 |
+
|
22 |
+
# Expand dimensions to match model input shape
|
23 |
+
img = np.expand_dims(img, axis=0)
|
24 |
+
|
25 |
+
return img
|
26 |
|
27 |
def predict_input_image(img):
|
28 |
+
# Preprocess the input image
|
29 |
+
img = preprocess_image(img)
|
30 |
+
|
31 |
+
# Load the pre-trained model
|
32 |
model = tf.keras.models.load_model('Tumor_Model.h5')
|
33 |
+
|
34 |
+
# Make predictions
|
35 |
prediction = model.predict(img)
|
36 |
+
result = 'No Tumor Detected' if prediction[0][0] > 0.5 else 'Tumor detected'
|
37 |
|
38 |
return f"Prediction: {result}"
|
39 |
|
|
|
|
|
40 |
# Define Gradio interface
|
41 |
iface = gr.Interface(
|
42 |
fn=predict_input_image,
|
43 |
+
inputs=gr.Image(type="numpy", preprocess=preprocess_image),
|
44 |
outputs="text",
|
45 |
)
|
46 |
|