RUL / app.py
Electronik3's picture
Update app.py
1d39e0b
import gradio as gr
import models
def train():
return 'https://images.deepai.org/converted-papers/1803.09820/testLoss1.png'
def pred(engine):
engine = engine-1
pred_truth = models.lstm(engine)
return 'https://www.owtrun.com/blog/wp-content/uploads/2023/01/RUL1.2-34-at-161-1024x527.png', f'{pred_truth[0]:.2f} | {pred_truth[1]:.0f}'
with gr.Blocks(css="footer {visibility: hidden}", title="Прогнозирование RUL") as demo:
gr.Markdown("Выберите модель, набор данных и номер двигателя для прогнозирования оставшегося ресурса оборудования (RUL)")
with gr.Tab('Демо'):
with gr.Row():
with gr.Column():
model_list_demo = gr.Radio(["LSTM", "VAE"],label='Модель')
gr.Radio(["FD001", "FD002", "FD003", "FD004"],label='Набор данных')
engine_slider_demo = gr.Slider(1, 100, step=1, label='Двигатель', info='InFo', interactive=True)
pred_bttn = gr.Button('Прогноз')
with gr.Column():
ill_chart = gr.Image(label='Прогноз')
prediction1 = gr.Label(value='ххх | xxx', label='Прогноз | Истина')
with gr.Tab('Обучение'):
with gr.Row():
with gr.Column():
gr.File(file_types=['.csv'],label='Данные')
gr.Radio(["LSTM", "VAE", "XGBoost"],label='Модель')
train_bttn = gr.Button(value='Обучить')
gr.Slider(1, 100, step=1, label='Двигатель', interactive=True)
preed_bttn = gr.Button(value='Прогноз')
with gr.Column():
lc_chart = gr.Image(label='График обучения')
prediction2 = gr.Label(value='ххх', label='Прогноз')
pred_bttn.click(pred, inputs=[engine_slider_demo] , outputs=[ill_chart, prediction1])
train_bttn.click(train, outputs=lc_chart)
demo.launch()