Spaces:
Runtime error
Runtime error
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import datasets | |
import soundfile | |
import librosa | |
import gradio as gr | |
import torch | |
# Global variables to hold model, processor, and pipeline after first load | |
model = None | |
processor = None | |
asr_pipeline = None | |
def load_model(): | |
global model, processor, asr_pipeline | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import torch | |
# Set up device and data type for torch based on GPU availability | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "distil-whisper/distil-large-v3" | |
if model is None: | |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) | |
model.to(device) | |
if processor is None: | |
processor = AutoProcessor.from_pretrained(model_id) | |
if asr_pipeline is None: | |
asr_pipeline = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
feature_extractor=processor.feature_extractor, | |
tokenizer=processor.tokenizer, | |
device=device, | |
torch_dtype=torch_dtype | |
) | |
def transcribe_speech(file_info): | |
# Ensure model and processor are loaded | |
load_model() | |
filepath = file_info['path'] | |
input_features = processor(filepath, return_tensors="pt").input_features | |
# Transcribe the audio | |
result = asr_pipeline(input_features) | |
return result['text'] | |
# Building the Gradio app | |
with gr.Blocks() as demo: | |
with gr.Tab("Transcribe Audio"): | |
with gr.Row(): | |
audio_input = gr.Audio(label="Upload audio file or record") | |
with gr.Row(): | |
audio_output = gr.Textbox(label="Transcription") | |
demo.add_callback(transcribe_speech, inputs=[audio_input], outputs=[audio_output]) | |
# Launch the app | |
demo.launch(share=True) | |