Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
-
# streamlit_app.py
|
| 2 |
import streamlit as st
|
| 3 |
from transformers import pipeline
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
-
import tempfile
|
| 6 |
import soundfile as sf
|
| 7 |
-
import
|
| 8 |
-
import io
|
| 9 |
|
| 10 |
# Caching the text-to-speech model
|
| 11 |
@st.cache_resource
|
|
@@ -21,17 +19,24 @@ if 'conversation_history' not in st.session_state:
|
|
| 21 |
if 'tts_audio' not in st.session_state:
|
| 22 |
st.session_state.tts_audio = None
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def convert_text_to_speech(text):
|
|
|
|
| 25 |
# Generate speech from text
|
| 26 |
-
audio = tts_pipe(text)
|
| 27 |
return audio
|
| 28 |
|
| 29 |
-
def
|
| 30 |
-
#
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
f.write(audio['audio'])
|
| 34 |
-
return temp_file.name
|
| 35 |
|
| 36 |
# Sidebar options
|
| 37 |
st.sidebar.title("App Settings")
|
|
@@ -51,14 +56,11 @@ if feature == "Text-to-Speech":
|
|
| 51 |
if user_message:
|
| 52 |
# Convert text to speech
|
| 53 |
tts_audio = convert_text_to_speech(user_message)
|
| 54 |
-
|
| 55 |
|
| 56 |
# Display the audio player
|
| 57 |
-
st.audio(
|
| 58 |
st.success("Conversion successful!")
|
| 59 |
-
|
| 60 |
-
# Clean up temporary file
|
| 61 |
-
os.remove(audio_file)
|
| 62 |
else:
|
| 63 |
st.warning("Please enter text before converting.")
|
| 64 |
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
+
import io
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
import soundfile as sf
|
| 6 |
+
import requests
|
|
|
|
| 7 |
|
| 8 |
# Caching the text-to-speech model
|
| 9 |
@st.cache_resource
|
|
|
|
| 19 |
if 'tts_audio' not in st.session_state:
|
| 20 |
st.session_state.tts_audio = None
|
| 21 |
|
| 22 |
+
# Example function to obtain speaker embeddings
|
| 23 |
+
def get_speaker_embeddings():
|
| 24 |
+
# Placeholder: Replace with actual code to obtain embeddings
|
| 25 |
+
url = "https://huggingface.co/datasets/Matthijs/cmu-arctic-xvectors/resolve/main/xvectors.npy"
|
| 26 |
+
response = requests.get(url)
|
| 27 |
+
speaker_embeddings = np.load(io.BytesIO(response.content))
|
| 28 |
+
return speaker_embeddings
|
| 29 |
+
|
| 30 |
def convert_text_to_speech(text):
|
| 31 |
+
speaker_embeddings = get_speaker_embeddings() # Obtain speaker embeddings
|
| 32 |
# Generate speech from text
|
| 33 |
+
audio = tts_pipe(text, speaker_embeddings=speaker_embeddings)
|
| 34 |
return audio
|
| 35 |
|
| 36 |
+
def convert_audio_to_bytes(audio):
|
| 37 |
+
# Convert audio data to bytes
|
| 38 |
+
audio_buffer = io.BytesIO(audio['audio'])
|
| 39 |
+
return audio_buffer
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Sidebar options
|
| 42 |
st.sidebar.title("App Settings")
|
|
|
|
| 56 |
if user_message:
|
| 57 |
# Convert text to speech
|
| 58 |
tts_audio = convert_text_to_speech(user_message)
|
| 59 |
+
audio_bytes = convert_audio_to_bytes(tts_audio)
|
| 60 |
|
| 61 |
# Display the audio player
|
| 62 |
+
st.audio(audio_bytes, format='audio/wav')
|
| 63 |
st.success("Conversion successful!")
|
|
|
|
|
|
|
|
|
|
| 64 |
else:
|
| 65 |
st.warning("Please enter text before converting.")
|
| 66 |
|