|
import torch |
|
import torch.nn.functional as F |
|
from math import exp |
|
import numpy as np |
|
|
|
def gaussian(window_size, sigma): |
|
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) |
|
return gauss/gauss.sum() |
|
|
|
def create_window(window_size, channel=1): |
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) |
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) |
|
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() |
|
return window |
|
|
|
def SSIM(img1, img2, window_size=11, window=None, size_average=True, full=False): |
|
img1 = (img1 * 0.5 + 0.5) * 255 |
|
img2 = (img2 * 0.5 + 0.5) * 255 |
|
min_val = 0 |
|
max_val = 255 |
|
L = max_val - min_val |
|
img2 = torch.clamp(img2, 0.0, 255.0) |
|
|
|
padd = 0 |
|
(_, channel, height, width) = img1.size() |
|
if window is None: |
|
real_size = min(window_size, height, width) |
|
window = create_window(real_size, channel=channel).to(img1.device) |
|
|
|
mu1 = F.conv2d(img1, window, padding=padd, groups=channel) |
|
mu2 = F.conv2d(img2, window, padding=padd, groups=channel) |
|
|
|
mu1_sq = mu1.pow(2) |
|
mu2_sq = mu2.pow(2) |
|
mu1_mu2 = mu1 * mu2 |
|
|
|
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq |
|
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq |
|
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2 |
|
|
|
C1 = (0.01 * L) ** 2 |
|
C2 = (0.03 * L) ** 2 |
|
|
|
v1 = 2.0 * sigma12 + C2 |
|
v2 = sigma1_sq + sigma2_sq + C2 |
|
cs = torch.mean(v1 / v2) |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) |
|
|
|
if size_average: |
|
ret = ssim_map.mean() |
|
else: |
|
ret = ssim_map.mean(1).mean(1).mean(1) |
|
|
|
if full: |
|
return ret, cs |
|
return ret |
|
|
|
def tf_log10(x): |
|
numerator = torch.log(x) |
|
denominator = torch.log(torch.tensor(10.0)) |
|
return numerator / denominator |
|
|
|
def PSNR(img1, img2): |
|
img1 = (img1 * 0.5 + 0.5) * 255 |
|
img2 = (img2 * 0.5 + 0.5) * 255 |
|
max_pixel = 255.0 |
|
img2 = torch.clamp(img2, 0.0, 255.0) |
|
return 10.0 * tf_log10((max_pixel ** 2) / (torch.mean(torch.pow(img2 - img1, 2)))) |
|
|