|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ResNet variants""" |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
|
|
from .splat import SplAtConv2d |
|
|
|
__all__ = ['ResNet', 'Bottleneck'] |
|
|
|
class DropBlock2D(object): |
|
def __init__(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
class GlobalAvgPool2d(nn.Module): |
|
def __init__(self): |
|
"""Global average pooling over the input's spatial dimensions""" |
|
super(GlobalAvgPool2d, self).__init__() |
|
|
|
def forward(self, inputs): |
|
return nn.functional.adaptive_avg_pool2d(inputs, 1).view(inputs.size(0), -1) |
|
|
|
class Bottleneck(nn.Module): |
|
"""ResNet Bottleneck |
|
""" |
|
|
|
expansion = 4 |
|
def __init__(self, inplanes, planes, stride=1, downsample=None, |
|
radix=1, cardinality=1, bottleneck_width=64, |
|
avd=False, avd_first=False, dilation=1, is_first=False, |
|
rectified_conv=False, rectify_avg=False, |
|
norm_layer=None, dropblock_prob=0.0, last_gamma=False): |
|
super(Bottleneck, self).__init__() |
|
group_width = int(planes * (bottleneck_width / 64.)) * cardinality |
|
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) |
|
self.bn1 = norm_layer(group_width) |
|
self.dropblock_prob = dropblock_prob |
|
self.radix = radix |
|
self.avd = avd and (stride > 1 or is_first) |
|
self.avd_first = avd_first |
|
|
|
if self.avd: |
|
self.avd_layer = nn.AvgPool2d(3, stride, padding=1) |
|
stride = 1 |
|
|
|
if dropblock_prob > 0.0: |
|
self.dropblock1 = DropBlock2D(dropblock_prob, 3) |
|
if radix == 1: |
|
self.dropblock2 = DropBlock2D(dropblock_prob, 3) |
|
self.dropblock3 = DropBlock2D(dropblock_prob, 3) |
|
|
|
if radix >= 1: |
|
self.conv2 = SplAtConv2d( |
|
group_width, group_width, kernel_size=3, |
|
stride=stride, padding=dilation, |
|
dilation=dilation, groups=cardinality, bias=False, |
|
radix=radix, rectify=rectified_conv, |
|
rectify_avg=rectify_avg, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
elif rectified_conv: |
|
from rfconv import RFConv2d |
|
self.conv2 = RFConv2d( |
|
group_width, group_width, kernel_size=3, stride=stride, |
|
padding=dilation, dilation=dilation, |
|
groups=cardinality, bias=False, |
|
average_mode=rectify_avg) |
|
self.bn2 = norm_layer(group_width) |
|
else: |
|
self.conv2 = nn.Conv2d( |
|
group_width, group_width, kernel_size=3, stride=stride, |
|
padding=dilation, dilation=dilation, |
|
groups=cardinality, bias=False) |
|
self.bn2 = norm_layer(group_width) |
|
|
|
self.conv3 = nn.Conv2d( |
|
group_width, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = norm_layer(planes*4) |
|
|
|
if last_gamma: |
|
from torch.nn.init import zeros_ |
|
zeros_(self.bn3.weight) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.dilation = dilation |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
if self.dropblock_prob > 0.0: |
|
out = self.dropblock1(out) |
|
out = self.relu(out) |
|
|
|
if self.avd and self.avd_first: |
|
out = self.avd_layer(out) |
|
|
|
out = self.conv2(out) |
|
if self.radix == 0: |
|
out = self.bn2(out) |
|
if self.dropblock_prob > 0.0: |
|
out = self.dropblock2(out) |
|
out = self.relu(out) |
|
|
|
if self.avd and not self.avd_first: |
|
out = self.avd_layer(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
if self.dropblock_prob > 0.0: |
|
out = self.dropblock3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
class ResNet(nn.Module): |
|
"""ResNet Variants |
|
|
|
Parameters |
|
---------- |
|
block : Block |
|
Class for the residual block. Options are BasicBlockV1, BottleneckV1. |
|
layers : list of int |
|
Numbers of layers in each block |
|
classes : int, default 1000 |
|
Number of classification classes. |
|
dilated : bool, default False |
|
Applying dilation strategy to pretrained ResNet yielding a stride-8 model, |
|
typically used in Semantic Segmentation. |
|
norm_layer : object |
|
Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; |
|
for Synchronized Cross-GPU BachNormalization). |
|
|
|
Reference: |
|
|
|
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. |
|
|
|
- Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." |
|
""" |
|
|
|
def __init__(self, block, layers, radix=1, groups=1, bottleneck_width=64, |
|
num_classes=1000, dilated=False, dilation=1, |
|
deep_stem=False, stem_width=64, avg_down=False, |
|
rectified_conv=False, rectify_avg=False, |
|
avd=False, avd_first=False, |
|
final_drop=0.0, dropblock_prob=0, |
|
last_gamma=False, norm_layer=nn.BatchNorm2d): |
|
self.cardinality = groups |
|
self.bottleneck_width = bottleneck_width |
|
|
|
self.inplanes = stem_width*2 if deep_stem else 64 |
|
self.avg_down = avg_down |
|
self.last_gamma = last_gamma |
|
|
|
self.radix = radix |
|
self.avd = avd |
|
self.avd_first = avd_first |
|
|
|
super(ResNet, self).__init__() |
|
self.rectified_conv = rectified_conv |
|
self.rectify_avg = rectify_avg |
|
if rectified_conv: |
|
from rfconv import RFConv2d |
|
conv_layer = RFConv2d |
|
else: |
|
conv_layer = nn.Conv2d |
|
conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {} |
|
''' |
|
if deep_stem: |
|
self.conv1 = nn.Sequential( |
|
conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs), |
|
norm_layer(stem_width), |
|
nn.ReLU(inplace=True), |
|
conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), |
|
norm_layer(stem_width), |
|
nn.ReLU(inplace=True), |
|
conv_layer(stem_width, stem_width*2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), |
|
) |
|
else: |
|
self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, |
|
bias=False, **conv_kwargs) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
''' |
|
|
|
self.layer1 = self._make_layer(block, 64, layers[0], stride=2, norm_layer=norm_layer, is_first=False) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer) |
|
if dilated or dilation == 4: |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, |
|
dilation=2, norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, |
|
dilation=4, norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
elif dilation==2: |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, |
|
dilation=1, norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, |
|
dilation=2, norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
else: |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, |
|
norm_layer=norm_layer, |
|
dropblock_prob=dropblock_prob) |
|
''' |
|
self.avgpool = GlobalAvgPool2d() |
|
self.drop = nn.Dropout(final_drop) if final_drop > 0.0 else None |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, norm_layer): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
''' |
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None, |
|
dropblock_prob=0.0, is_first=True): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
down_layers = [] |
|
if self.avg_down: |
|
if dilation == 1: |
|
down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride, |
|
ceil_mode=True, count_include_pad=False)) |
|
else: |
|
down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, |
|
ceil_mode=True, count_include_pad=False)) |
|
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=1, bias=False)) |
|
else: |
|
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False)) |
|
down_layers.append(norm_layer(planes * block.expansion)) |
|
downsample = nn.Sequential(*down_layers) |
|
|
|
layers = [] |
|
if dilation == 1 or dilation == 2: |
|
layers.append(block(self.inplanes, planes, stride, downsample=downsample, |
|
radix=self.radix, cardinality=self.cardinality, |
|
bottleneck_width=self.bottleneck_width, |
|
avd=self.avd, avd_first=self.avd_first, |
|
dilation=1, is_first=is_first, rectified_conv=self.rectified_conv, |
|
rectify_avg=self.rectify_avg, |
|
norm_layer=norm_layer, dropblock_prob=dropblock_prob, |
|
last_gamma=self.last_gamma)) |
|
elif dilation == 4: |
|
layers.append(block(self.inplanes, planes, stride, downsample=downsample, |
|
radix=self.radix, cardinality=self.cardinality, |
|
bottleneck_width=self.bottleneck_width, |
|
avd=self.avd, avd_first=self.avd_first, |
|
dilation=2, is_first=is_first, rectified_conv=self.rectified_conv, |
|
rectify_avg=self.rectify_avg, |
|
norm_layer=norm_layer, dropblock_prob=dropblock_prob, |
|
last_gamma=self.last_gamma)) |
|
else: |
|
raise RuntimeError("=> unknown dilation size: {}".format(dilation)) |
|
|
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, |
|
radix=self.radix, cardinality=self.cardinality, |
|
bottleneck_width=self.bottleneck_width, |
|
avd=self.avd, avd_first=self.avd_first, |
|
dilation=dilation, rectified_conv=self.rectified_conv, |
|
rectify_avg=self.rectify_avg, |
|
norm_layer=norm_layer, dropblock_prob=dropblock_prob, |
|
last_gamma=self.last_gamma)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
''' |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
''' |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
''' |
|
x = self.avgpool(x) |
|
#x = x.view(x.size(0), -1) |
|
x = torch.flatten(x, 1) |
|
if self.drop: |
|
x = self.drop(x) |
|
x = self.fc(x) |
|
''' |
|
return x |
|
|