Spaces:
Build error
Build error
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
from PIL import Image | |
from nets.esrgan import Generator | |
from utils.utils import cvtColor, preprocess_input | |
class ESRGAN(object): | |
#-----------------------------------------# | |
# 注意修改model_path | |
#-----------------------------------------# | |
_defaults = { | |
#-----------------------------------------------# | |
# model_path指向logs文件夹下的权值文件 | |
#-----------------------------------------------# | |
"model_path" : 'model_data/Generator_ESRGAN.pth', | |
#-----------------------------------------------# | |
# 上采样的倍数,和训练时一样 | |
#-----------------------------------------------# | |
"scale_factor" : 8, | |
#-------------------------------# | |
# 是否使用Cuda | |
# 没有GPU可以设置成False | |
#-------------------------------# | |
"cuda" : False, | |
} | |
#---------------------------------------------------# | |
# 初始化SRGAN | |
#---------------------------------------------------# | |
def __init__(self, **kwargs): | |
self.__dict__.update(self._defaults) | |
for name, value in kwargs.items(): | |
setattr(self, name, value) | |
self.generate() | |
def generate(self): | |
self.net = Generator(self.scale_factor) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.net.load_state_dict(torch.load(self.model_path, map_location=device)) | |
self.net = self.net.eval() | |
print('{} model, and classes loaded.'.format(self.model_path)) | |
if self.cuda: | |
self.net = torch.nn.DataParallel(self.net) | |
cudnn.benchmark = True | |
self.net = self.net.cuda() | |
def generate_1x1_image(self, image): | |
#---------------------------------------------------------# | |
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 | |
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB | |
#---------------------------------------------------------# | |
image = cvtColor(image) | |
#---------------------------------------------------------# | |
# 添加上batch_size维度,并进行归一化 | |
#---------------------------------------------------------# | |
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image, dtype=np.float32), [0.5,0.5,0.5], [0.5,0.5,0.5]), [2,0,1]), 0) | |
with torch.no_grad(): | |
image_data = torch.from_numpy(image_data).type(torch.FloatTensor) | |
if self.cuda: | |
image_data = image_data.cuda() | |
#---------------------------------------------------------# | |
# 将图像输入网络当中进行预测! | |
#---------------------------------------------------------# | |
hr_image = self.net(image_data)[0] | |
#---------------------------------------------------------# | |
# 将归一化的结果再转成rgb格式 | |
#---------------------------------------------------------# | |
hr_image = (hr_image.cpu().data.numpy().transpose(1, 2, 0) * 0.5 + 0.5) | |
hr_image = (hr_image-np.min(hr_image))/(np.max(hr_image)-np.min(hr_image)) * 255 | |
hr_image = Image.fromarray(np.uint8(hr_image)) | |
return hr_image | |