Spaces:
Build error
Build error
import torch | |
from tqdm import tqdm | |
from .utils import show_result, get_lr | |
from .utils_metrics import PSNR, SSIM | |
def fit_one_epoch(G_model_train, D_model_train, G_model, D_model, VGG_feature_model, G_optimizer, D_optimizer, BCE_loss, MSE_loss, epoch, epoch_size, gen, Epoch, cuda, batch_size, save_interval): | |
G_total_loss = 0 | |
D_total_loss = 0 | |
G_total_PSNR = 0 | |
G_total_SSIM = 0 | |
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar: | |
for iteration, batch in enumerate(gen): | |
if iteration >= epoch_size: | |
break | |
with torch.no_grad(): | |
lr_images, hr_images = batch | |
lr_images, hr_images = torch.from_numpy(lr_images).type(torch.FloatTensor), torch.from_numpy(hr_images).type(torch.FloatTensor) | |
y_real, y_fake = torch.ones(batch_size), torch.zeros(batch_size) | |
if cuda: | |
lr_images, hr_images, y_real, y_fake = lr_images.cuda(), hr_images.cuda(), y_real.cuda(), y_fake.cuda() | |
#-------------------------------------------------# | |
# 训练判别器 | |
#-------------------------------------------------# | |
D_optimizer.zero_grad() | |
D_result = D_model_train(hr_images) | |
D_real_loss = BCE_loss(D_result, y_real) | |
D_real_loss.backward() | |
G_result = G_model_train(lr_images) | |
D_result = D_model_train(G_result).squeeze() | |
D_fake_loss = BCE_loss(D_result, y_fake) | |
D_fake_loss.backward() | |
D_optimizer.step() | |
D_train_loss = D_real_loss + D_fake_loss | |
#-------------------------------------------------# | |
# 训练生成器 | |
#-------------------------------------------------# | |
G_optimizer.zero_grad() | |
G_result = G_model_train(lr_images) | |
image_loss = MSE_loss(G_result, hr_images) | |
D_result = D_model_train(G_result).squeeze() | |
adversarial_loss = BCE_loss(D_result, y_real) | |
perception_loss = MSE_loss(VGG_feature_model(G_result), VGG_feature_model(hr_images)) | |
G_train_loss = image_loss + 1e-3 * adversarial_loss + 2e-6 * perception_loss | |
G_train_loss.backward() | |
G_optimizer.step() | |
G_total_loss += G_train_loss.item() | |
D_total_loss += D_train_loss.item() | |
with torch.no_grad(): | |
G_total_PSNR += PSNR(G_result, hr_images).item() | |
G_total_SSIM += SSIM(G_result, hr_images).item() | |
pbar.set_postfix(**{'G_loss' : G_total_loss / (iteration + 1), | |
'D_loss' : D_total_loss / (iteration + 1), | |
'G_PSNR' : G_total_PSNR / (iteration + 1), | |
'G_SSIM' : G_total_SSIM / (iteration + 1), | |
'lr' : get_lr(G_optimizer)}) | |
pbar.update(1) | |
if iteration % save_interval == 0: | |
show_result(epoch + 1, G_model_train, lr_images, hr_images) | |
print('Epoch:'+ str(epoch + 1) + '/' + str(Epoch)) | |
print('G Loss: %.4f || D Loss: %.4f ' % (G_total_loss / epoch_size, D_total_loss / epoch_size)) | |
print('Saving state, iter:', str(epoch+1)) | |
if (epoch + 1) % 10==0: | |
torch.save(G_model.state_dict(), 'logs/G_Epoch%d-GLoss%.4f-DLoss%.4f.pth'%((epoch + 1), G_total_loss / epoch_size, D_total_loss / epoch_size)) | |
torch.save(D_model.state_dict(), 'logs/D_Epoch%d-GLoss%.4f-DLoss%.4f.pth'%((epoch + 1), G_total_loss / epoch_size, D_total_loss / epoch_size)) | |