LicenseGAN / utils /utils_fit.py
白鹭先生
init
905cd18
raw
history blame
3.94 kB
import torch
from tqdm import tqdm
from .utils import show_result, get_lr
from .utils_metrics import PSNR, SSIM
def fit_one_epoch(G_model_train, D_model_train, G_model, D_model, VGG_feature_model, G_optimizer, D_optimizer, BCE_loss, MSE_loss, epoch, epoch_size, gen, Epoch, cuda, batch_size, save_interval):
G_total_loss = 0
D_total_loss = 0
G_total_PSNR = 0
G_total_SSIM = 0
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
with torch.no_grad():
lr_images, hr_images = batch
lr_images, hr_images = torch.from_numpy(lr_images).type(torch.FloatTensor), torch.from_numpy(hr_images).type(torch.FloatTensor)
y_real, y_fake = torch.ones(batch_size), torch.zeros(batch_size)
if cuda:
lr_images, hr_images, y_real, y_fake = lr_images.cuda(), hr_images.cuda(), y_real.cuda(), y_fake.cuda()
#-------------------------------------------------#
# 训练判别器
#-------------------------------------------------#
D_optimizer.zero_grad()
D_result = D_model_train(hr_images)
D_real_loss = BCE_loss(D_result, y_real)
D_real_loss.backward()
G_result = G_model_train(lr_images)
D_result = D_model_train(G_result).squeeze()
D_fake_loss = BCE_loss(D_result, y_fake)
D_fake_loss.backward()
D_optimizer.step()
D_train_loss = D_real_loss + D_fake_loss
#-------------------------------------------------#
# 训练生成器
#-------------------------------------------------#
G_optimizer.zero_grad()
G_result = G_model_train(lr_images)
image_loss = MSE_loss(G_result, hr_images)
D_result = D_model_train(G_result).squeeze()
adversarial_loss = BCE_loss(D_result, y_real)
perception_loss = MSE_loss(VGG_feature_model(G_result), VGG_feature_model(hr_images))
G_train_loss = image_loss + 1e-3 * adversarial_loss + 2e-6 * perception_loss
G_train_loss.backward()
G_optimizer.step()
G_total_loss += G_train_loss.item()
D_total_loss += D_train_loss.item()
with torch.no_grad():
G_total_PSNR += PSNR(G_result, hr_images).item()
G_total_SSIM += SSIM(G_result, hr_images).item()
pbar.set_postfix(**{'G_loss' : G_total_loss / (iteration + 1),
'D_loss' : D_total_loss / (iteration + 1),
'G_PSNR' : G_total_PSNR / (iteration + 1),
'G_SSIM' : G_total_SSIM / (iteration + 1),
'lr' : get_lr(G_optimizer)})
pbar.update(1)
if iteration % save_interval == 0:
show_result(epoch + 1, G_model_train, lr_images, hr_images)
print('Epoch:'+ str(epoch + 1) + '/' + str(Epoch))
print('G Loss: %.4f || D Loss: %.4f ' % (G_total_loss / epoch_size, D_total_loss / epoch_size))
print('Saving state, iter:', str(epoch+1))
if (epoch + 1) % 10==0:
torch.save(G_model.state_dict(), 'logs/G_Epoch%d-GLoss%.4f-DLoss%.4f.pth'%((epoch + 1), G_total_loss / epoch_size, D_total_loss / epoch_size))
torch.save(D_model.state_dict(), 'logs/D_Epoch%d-GLoss%.4f-DLoss%.4f.pth'%((epoch + 1), G_total_loss / epoch_size, D_total_loss / epoch_size))