HEAT / models /ops /src /cuda /ms_deform_attn_cuda.cu
Egrt's picture
init
424188c
raw
history blame contribute delete
No virus
7.32 kB
/*!
**************************************************************************************************
* Deformable DETR
* Copyright (c) 2020 SenseTime. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
**************************************************************************************************
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
**************************************************************************************************
*/
#include <vector>
#include "cuda/ms_deform_im2col_cuda.cuh"
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
at::Tensor ms_deform_attn_cuda_forward(
const at::Tensor &value,
const at::Tensor &spatial_shapes,
const at::Tensor &level_start_index,
const at::Tensor &sampling_loc,
const at::Tensor &attn_weight,
const int im2col_step)
{
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
const int batch = value.size(0);
const int spatial_size = value.size(1);
const int num_heads = value.size(2);
const int channels = value.size(3);
const int num_levels = spatial_shapes.size(0);
const int num_query = sampling_loc.size(1);
const int num_point = sampling_loc.size(4);
const int im2col_step_ = std::min(batch, im2col_step);
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
const int batch_n = im2col_step_;
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
auto per_value_size = spatial_size * num_heads * channels;
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
for (int n = 0; n < batch/im2col_step_; ++n)
{
auto columns = output_n.select(0, n);
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
spatial_shapes.data<int64_t>(),
level_start_index.data<int64_t>(),
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
columns.data<scalar_t>());
}));
}
output = output.view({batch, num_query, num_heads*channels});
return output;
}
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
const at::Tensor &value,
const at::Tensor &spatial_shapes,
const at::Tensor &level_start_index,
const at::Tensor &sampling_loc,
const at::Tensor &attn_weight,
const at::Tensor &grad_output,
const int im2col_step)
{
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
const int batch = value.size(0);
const int spatial_size = value.size(1);
const int num_heads = value.size(2);
const int channels = value.size(3);
const int num_levels = spatial_shapes.size(0);
const int num_query = sampling_loc.size(1);
const int num_point = sampling_loc.size(4);
const int im2col_step_ = std::min(batch, im2col_step);
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
auto grad_value = at::zeros_like(value);
auto grad_sampling_loc = at::zeros_like(sampling_loc);
auto grad_attn_weight = at::zeros_like(attn_weight);
const int batch_n = im2col_step_;
auto per_value_size = spatial_size * num_heads * channels;
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
for (int n = 0; n < batch/im2col_step_; ++n)
{
auto grad_output_g = grad_output_n.select(0, n);
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
grad_output_g.data<scalar_t>(),
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
spatial_shapes.data<int64_t>(),
level_start_index.data<int64_t>(),
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
}));
}
return {
grad_value, grad_sampling_loc, grad_attn_weight
};
}