|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ResNeSt ablation study models""" |
|
|
|
import torch |
|
from .resnet import ResNet, Bottleneck |
|
|
|
__all__ = ['resnest50_fast_1s1x64d', 'resnest50_fast_2s1x64d', 'resnest50_fast_4s1x64d', |
|
'resnest50_fast_1s2x40d', 'resnest50_fast_2s2x40d', 'resnest50_fast_4s2x40d', |
|
'resnest50_fast_1s4x24d'] |
|
|
|
_url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth' |
|
|
|
_model_sha256 = {name: checksum for checksum, name in [ |
|
('d8fbf808', 'resnest50_fast_1s1x64d'), |
|
('44938639', 'resnest50_fast_2s1x64d'), |
|
('f74f3fc3', 'resnest50_fast_4s1x64d'), |
|
('32830b84', 'resnest50_fast_1s2x40d'), |
|
('9d126481', 'resnest50_fast_2s2x40d'), |
|
('41d14ed0', 'resnest50_fast_4s2x40d'), |
|
('d4a4f76f', 'resnest50_fast_1s4x24d'), |
|
]} |
|
|
|
def short_hash(name): |
|
if name not in _model_sha256: |
|
raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) |
|
return _model_sha256[name][:8] |
|
|
|
resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for |
|
name in _model_sha256.keys() |
|
} |
|
|
|
def resnest50_fast_1s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
radix=1, groups=1, bottleneck_width=64, |
|
deep_stem=True, stem_width=32, avg_down=True, |
|
avd=True, avd_first=True, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
resnest_model_urls['resnest50_fast_1s1x64d'], progress=True, check_hash=True)) |
|
return model |
|
|
|
def resnest50_fast_2s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
radix=2, groups=1, bottleneck_width=64, |
|
deep_stem=True, stem_width=32, avg_down=True, |
|
avd=True, avd_first=True, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
resnest_model_urls['resnest50_fast_2s1x64d'], progress=True, check_hash=True)) |
|
return model |
|
|
|
def resnest50_fast_4s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
radix=4, groups=1, bottleneck_width=64, |
|
deep_stem=True, stem_width=32, avg_down=True, |
|
avd=True, avd_first=True, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
resnest_model_urls['resnest50_fast_4s1x64d'], progress=True, check_hash=True)) |
|
return model |
|
|
|
def resnest50_fast_1s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
radix=1, groups=2, bottleneck_width=40, |
|
deep_stem=True, stem_width=32, avg_down=True, |
|
avd=True, avd_first=True, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
resnest_model_urls['resnest50_fast_1s2x40d'], progress=True, check_hash=True)) |
|
return model |
|
|
|
def resnest50_fast_2s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
radix=2, groups=2, bottleneck_width=40, |
|
deep_stem=True, stem_width=32, avg_down=True, |
|
avd=True, avd_first=True, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
resnest_model_urls['resnest50_fast_2s2x40d'], progress=True, check_hash=True)) |
|
return model |
|
|
|
def resnest50_fast_4s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
radix=4, groups=2, bottleneck_width=40, |
|
deep_stem=True, stem_width=32, avg_down=True, |
|
avd=True, avd_first=True, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
resnest_model_urls['resnest50_fast_4s2x40d'], progress=True, check_hash=True)) |
|
return model |
|
|
|
def resnest50_fast_1s4x24d(pretrained=False, root='~/.encoding/models', **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
radix=1, groups=4, bottleneck_width=24, |
|
deep_stem=True, stem_width=32, avg_down=True, |
|
avd=True, avd_first=True, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
resnest_model_urls['resnest50_fast_1s4x24d'], progress=True, check_hash=True)) |
|
return model |
|
|