白鹭先生
init
c9843cd
raw
history blame
2.24 kB
'''
Author: [egrt]
Date: 2022-08-05 15:30:04
LastEditors: [egrt]
LastEditTime: 2022-08-17 20:36:44
Description:
'''
import os
os.system('pip install requirements.txt')
import gradio as gr
from AutoML import Classification
classfication = Classification()
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
name_box = gr.Textbox(label="艺术家姓名")
date_box = gr.Number(label="艺术品创作时间(年)")
classification_box = gr.CheckboxGroup(label="艺术品类型", choices=["中国山水画", "中国花鸟画", "风景油画",
"水粉画", "油画", "布面油画", "没骨画", "中国画"])
level_box = gr.CheckboxGroup(label="艺术家级别", choices=["国家级", "省级"])
height_box = gr.Number(label="艺术品高度(cm)")
width_box = gr.Number(label="艺术品宽度(cm)")
with gr.Column():
title_box = gr.Markdown("## 艺术品价值预测Demo")
image_box = gr.Image(label="艺术品照片", type='pil')
with gr.Row():
submit_btn = gr.Button("开始预测")
error_box = gr.Textbox(label="错误", visible=False)
with gr.Row(visible=False) as output_col:
prices_box = gr.Number(label="预测的艺术品价格(¥)")
def submit(name, date, classification, level, height, width, image):
# 填写信息错误则显示报错提示框
if len(name)==0 or len(classification)==0 or len(level) == 0 or image==None:
return {error_box: gr.update(value="请填写所有信息", visible=True)}
else:
# 正确预测之后则去除报错提示框
error_box: gr.update(visible=False)
prices = classfication.detect_one(name, date, level[0], classification[0], height, width)
return {
output_col: gr.update(visible=True),
prices_box: int(prices),
}
submit_btn.click(
submit,
[name_box, date_box, classification_box, level_box, height_box, width_box, image_box],
[error_box, prices_box, output_col],
)
demo.launch()