vineelpratap
commited on
Commit
·
4090e0d
1
Parent(s):
5cc287f
Update asr.py
Browse files
asr.py
CHANGED
@@ -30,9 +30,40 @@ lm_decoding_configfile = hf_hub_download(
|
|
30 |
with open(lm_decoding_configfile) as f:
|
31 |
lm_decoding_config = json.loads(f.read())
|
32 |
|
33 |
-
# allow language model decoding for
|
34 |
-
lm_decode_isos = ["eng"]
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def transcribe(
|
38 |
audio_source=None, microphone=None, file_upload=None, lang="eng (English)"
|
@@ -75,42 +106,10 @@ def transcribe(
|
|
75 |
with torch.no_grad():
|
76 |
outputs = model(**inputs).logits
|
77 |
|
78 |
-
if lang_code
|
79 |
ids = torch.argmax(outputs, dim=-1)[0]
|
80 |
transcription = processor.decode(ids)
|
81 |
else:
|
82 |
-
decoding_config = lm_decoding_config[lang_code]
|
83 |
-
|
84 |
-
lm_file = hf_hub_download(
|
85 |
-
repo_id="facebook/mms-cclms",
|
86 |
-
filename=decoding_config["lmfile"].rsplit("/", 1)[1],
|
87 |
-
subfolder=decoding_config["lmfile"].rsplit("/", 1)[0],
|
88 |
-
)
|
89 |
-
token_file = hf_hub_download(
|
90 |
-
repo_id="facebook/mms-cclms",
|
91 |
-
filename=decoding_config["tokensfile"].rsplit("/", 1)[1],
|
92 |
-
subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0],
|
93 |
-
)
|
94 |
-
lexicon_file = None
|
95 |
-
if decoding_config["lexiconfile"] is not None:
|
96 |
-
lexicon_file = hf_hub_download(
|
97 |
-
repo_id="facebook/mms-cclms",
|
98 |
-
filename=decoding_config["lexiconfile"].rsplit("/", 1)[1],
|
99 |
-
subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0],
|
100 |
-
)
|
101 |
-
|
102 |
-
beam_search_decoder = ctc_decoder(
|
103 |
-
lexicon=lexicon_file,
|
104 |
-
tokens=token_file,
|
105 |
-
lm=lm_file,
|
106 |
-
nbest=1,
|
107 |
-
beam_size=500,
|
108 |
-
beam_size_token=50,
|
109 |
-
lm_weight=float(decoding_config["lmweight"]),
|
110 |
-
word_score=float(decoding_config["wordscore"]),
|
111 |
-
sil_score=float(decoding_config["silweight"]),
|
112 |
-
blank_token="<s>",
|
113 |
-
)
|
114 |
beam_search_result = beam_search_decoder(outputs.to("cpu"))
|
115 |
transcription = " ".join(beam_search_result[0][0].words).strip()
|
116 |
|
|
|
30 |
with open(lm_decoding_configfile) as f:
|
31 |
lm_decoding_config = json.loads(f.read())
|
32 |
|
33 |
+
# allow language model decoding for "eng"
|
|
|
34 |
|
35 |
+
decoding_config = lm_decoding_config["eng"]
|
36 |
+
|
37 |
+
lm_file = hf_hub_download(
|
38 |
+
repo_id="facebook/mms-cclms",
|
39 |
+
filename=decoding_config["lmfile"].rsplit("/", 1)[1],
|
40 |
+
subfolder=decoding_config["lmfile"].rsplit("/", 1)[0],
|
41 |
+
)
|
42 |
+
token_file = hf_hub_download(
|
43 |
+
repo_id="facebook/mms-cclms",
|
44 |
+
filename=decoding_config["tokensfile"].rsplit("/", 1)[1],
|
45 |
+
subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0],
|
46 |
+
)
|
47 |
+
lexicon_file = None
|
48 |
+
if decoding_config["lexiconfile"] is not None:
|
49 |
+
lexicon_file = hf_hub_download(
|
50 |
+
repo_id="facebook/mms-cclms",
|
51 |
+
filename=decoding_config["lexiconfile"].rsplit("/", 1)[1],
|
52 |
+
subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0],
|
53 |
+
)
|
54 |
+
|
55 |
+
beam_search_decoder = ctc_decoder(
|
56 |
+
lexicon=lexicon_file,
|
57 |
+
tokens=token_file,
|
58 |
+
lm=lm_file,
|
59 |
+
nbest=1,
|
60 |
+
beam_size=500,
|
61 |
+
beam_size_token=50,
|
62 |
+
lm_weight=float(decoding_config["lmweight"]),
|
63 |
+
word_score=float(decoding_config["wordscore"]),
|
64 |
+
sil_score=float(decoding_config["silweight"]),
|
65 |
+
blank_token="<s>",
|
66 |
+
)
|
67 |
|
68 |
def transcribe(
|
69 |
audio_source=None, microphone=None, file_upload=None, lang="eng (English)"
|
|
|
106 |
with torch.no_grad():
|
107 |
outputs = model(**inputs).logits
|
108 |
|
109 |
+
if lang_code != "eng":
|
110 |
ids = torch.argmax(outputs, dim=-1)[0]
|
111 |
transcription = processor.decode(ids)
|
112 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
beam_search_result = beam_search_decoder(outputs.to("cpu"))
|
114 |
transcription = " ".join(beam_search_result[0][0].words).strip()
|
115 |
|