|
import librosa |
|
from transformers import Wav2Vec2ForCTC, AutoProcessor |
|
import torch |
|
import numpy as np |
|
from pathlib import Path |
|
|
|
from huggingface_hub import hf_hub_download |
|
from torchaudio.models.decoder import ctc_decoder |
|
|
|
ASR_SAMPLING_RATE = 16_000 |
|
|
|
ASR_LANGUAGES = {} |
|
with open(f"data/asr/all_langs.tsv") as f: |
|
for line in f: |
|
iso, name = line.split(" ", 1) |
|
ASR_LANGUAGES[iso.strip()] = name.strip() |
|
|
|
MODEL_ID = "facebook/mms-1b-all" |
|
|
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
|
|
|
|
lm_decoding_config = {} |
|
lm_decoding_configfile = hf_hub_download( |
|
repo_id="facebook/mms-cclms", |
|
filename="decoding_config.json", |
|
subfolder="mms-1b-all", |
|
) |
|
|
|
with open(lm_decoding_configfile) as f: |
|
lm_decoding_config = json.loads(f.read()) |
|
|
|
|
|
|
|
decoding_config = lm_decoding_config["eng"] |
|
|
|
lm_file = hf_hub_download( |
|
repo_id="facebook/mms-cclms", |
|
filename=decoding_config["lmfile"].rsplit("/", 1)[1], |
|
subfolder=decoding_config["lmfile"].rsplit("/", 1)[0], |
|
) |
|
token_file = hf_hub_download( |
|
repo_id="facebook/mms-cclms", |
|
filename=decoding_config["tokensfile"].rsplit("/", 1)[1], |
|
subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0], |
|
) |
|
lexicon_file = None |
|
if decoding_config["lexiconfile"] is not None: |
|
lexicon_file = hf_hub_download( |
|
repo_id="facebook/mms-cclms", |
|
filename=decoding_config["lexiconfile"].rsplit("/", 1)[1], |
|
subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0], |
|
) |
|
|
|
beam_search_decoder = ctc_decoder( |
|
lexicon=lexicon_file, |
|
tokens=token_file, |
|
lm=lm_file, |
|
nbest=1, |
|
beam_size=500, |
|
beam_size_token=50, |
|
lm_weight=float(decoding_config["lmweight"]), |
|
word_score=float(decoding_config["wordscore"]), |
|
sil_score=float(decoding_config["silweight"]), |
|
blank_token="<s>", |
|
) |
|
|
|
|
|
def transcribe(audio_data=None, lang="eng (English)"): |
|
|
|
assert lang.startswith("eng") |
|
|
|
if not audio_data: |
|
return "<<ERROR: Empty Audio Input>>" |
|
|
|
if isinstance(audio_data, tuple): |
|
|
|
sr, audio_samples = audio_data |
|
audio_samples = (audio_samples / 32768.0).astype(np.float32) |
|
if sr != ASR_SAMPLING_RATE: |
|
audio_samples = librosa.resample( |
|
audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE |
|
) |
|
else: |
|
|
|
|
|
if not isinstance(audio_data, str): |
|
return "<<ERROR: Invalid Audio Input Instance: {}>>".format(type(audio_data)) |
|
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0] |
|
|
|
lang_code = lang.split()[0] |
|
processor.tokenizer.set_target_lang(lang_code) |
|
model.load_adapter(lang_code) |
|
|
|
inputs = processor( |
|
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt" |
|
) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
elif ( |
|
hasattr(torch.backends, "mps") |
|
and torch.backends.mps.is_available() |
|
and torch.backends.mps.is_built() |
|
): |
|
device = torch.device("mps") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
model.to(device) |
|
inputs = inputs.to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs).logits |
|
|
|
beam_search_result = beam_search_decoder(outputs.to("cpu")) |
|
transcription = " ".join(beam_search_result[0][0].words).strip() |
|
|
|
return transcription |
|
|