PowerPoint-AI / llm_helper.py
barunsaha's picture
Use a form, a button, and a single LLM call to generate contents in JSON format. Disable image generation.
e55d16a
raw
history blame
3.35 kB
import json
import logging
import time
import requests
from langchain.llms import Clarifai
from global_config import GlobalConfig
logging.basicConfig(
level=GlobalConfig.LOG_LEVEL,
format='%(asctime)s - %(message)s',
)
llm = None
def get_llm(use_gpt: bool) -> Clarifai:
"""
Get a large language model.
:param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required
"""
if use_gpt:
_ = Clarifai(
pat=GlobalConfig.CLARIFAI_PAT,
user_id=GlobalConfig.CLARIFAI_USER_ID_GPT,
app_id=GlobalConfig.CLARIFAI_APP_ID_GPT,
model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT,
verbose=True,
# temperature=0.1,
)
else:
_ = Clarifai(
pat=GlobalConfig.CLARIFAI_PAT,
user_id=GlobalConfig.CLARIFAI_USER_ID,
app_id=GlobalConfig.CLARIFAI_APP_ID,
model_id=GlobalConfig.CLARIFAI_MODEL_ID,
verbose=True,
# temperature=0.1,
)
# print(llm)
return _
def generate_slides_content(topic: str) -> str:
"""
Generate the outline/contents of slides for a presentation on a given topic.
:param topic: Topic/subject matter/idea on which slides are to be generated
:return: The content in JSON format
"""
# global prompt
global llm
with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file:
template_txt = in_file.read().strip()
template_txt = template_txt.replace('<REPLACE_PLACEHOLDER>', topic)
if llm is None:
llm = get_llm(use_gpt=True)
slides_content = llm(template_txt, verbose=True)
return slides_content
def get_ai_image(text: str) -> str:
"""
Get a Stable Diffusion-generated image based on a given text.
:param text: The input text
:return: The Base 64-encoded image
"""
url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs'''
headers = {
"Content-Type": "application/json",
"Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}'
}
data = {
"inputs": [
{
"data": {
"text": {
"raw": text
}
}
}
]
}
# print('*** AI image generator...')
# print(url)
start = time.time()
response = requests.post(
url=url,
headers=headers,
data=json.dumps(data)
)
stop = time.time()
# print('Response:', response, response.status_code)
logging.debug('Image generation took', stop - start, 'seconds')
img_data = ''
if response.ok:
# print('*** Clarifai SDXL request: Response OK')
json_data = json.loads(response.text)
img_data = json_data['outputs'][0]['data']['image']['base64']
else:
logging.error('*** Image generation failed:', response.text)
return img_data
if __name__ == '__main__':
# results = get_related_websites('5G AI WiFi 6')
#
# for a_result in results.results:
# print(a_result.title, a_result.url, a_result.extract)
# get_ai_image('A talk on AI, covering pros and cons')
pass