Spaces:
Running
Running
Delete lib_v5
Browse files- lib_v5/mdxnet.py +0 -136
- lib_v5/mixer.ckpt +0 -3
- lib_v5/modules.py +0 -74
- lib_v5/pyrb.py +0 -92
- lib_v5/results.py +0 -48
- lib_v5/spec_utils.py +0 -1241
- lib_v5/tfc_tdf_v3.py +0 -253
- lib_v5/vr_network/__init__.py +0 -1
- lib_v5/vr_network/layers.py +0 -143
- lib_v5/vr_network/layers_new.py +0 -126
- lib_v5/vr_network/model_param_init.py +0 -32
- lib_v5/vr_network/modelparams/1band_sr16000_hl512.json +0 -19
- lib_v5/vr_network/modelparams/1band_sr32000_hl512.json +0 -19
- lib_v5/vr_network/modelparams/1band_sr33075_hl384.json +0 -19
- lib_v5/vr_network/modelparams/1band_sr44100_hl1024.json +0 -19
- lib_v5/vr_network/modelparams/1band_sr44100_hl256.json +0 -19
- lib_v5/vr_network/modelparams/1band_sr44100_hl512.json +0 -19
- lib_v5/vr_network/modelparams/1band_sr44100_hl512_cut.json +0 -19
- lib_v5/vr_network/modelparams/1band_sr44100_hl512_nf1024.json +0 -19
- lib_v5/vr_network/modelparams/2band_32000.json +0 -30
- lib_v5/vr_network/modelparams/2band_44100_lofi.json +0 -30
- lib_v5/vr_network/modelparams/2band_48000.json +0 -30
- lib_v5/vr_network/modelparams/3band_44100.json +0 -42
- lib_v5/vr_network/modelparams/3band_44100_mid.json +0 -43
- lib_v5/vr_network/modelparams/3band_44100_msb2.json +0 -43
- lib_v5/vr_network/modelparams/4band_44100.json +0 -54
- lib_v5/vr_network/modelparams/4band_44100_mid.json +0 -55
- lib_v5/vr_network/modelparams/4band_44100_msb.json +0 -55
- lib_v5/vr_network/modelparams/4band_44100_msb2.json +0 -55
- lib_v5/vr_network/modelparams/4band_44100_reverse.json +0 -55
- lib_v5/vr_network/modelparams/4band_44100_sw.json +0 -55
- lib_v5/vr_network/modelparams/4band_v2.json +0 -54
- lib_v5/vr_network/modelparams/4band_v2_sn.json +0 -55
- lib_v5/vr_network/modelparams/4band_v3.json +0 -54
- lib_v5/vr_network/modelparams/4band_v3_sn.json +0 -55
- lib_v5/vr_network/modelparams/ensemble.json +0 -43
- lib_v5/vr_network/nets.py +0 -166
- lib_v5/vr_network/nets_new.py +0 -125
lib_v5/mdxnet.py
DELETED
@@ -1,136 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from .modules import TFC_TDF
|
4 |
-
from pytorch_lightning import LightningModule
|
5 |
-
|
6 |
-
dim_s = 4
|
7 |
-
|
8 |
-
class AbstractMDXNet(LightningModule):
|
9 |
-
def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap):
|
10 |
-
super().__init__()
|
11 |
-
self.target_name = target_name
|
12 |
-
self.lr = lr
|
13 |
-
self.optimizer = optimizer
|
14 |
-
self.dim_c = dim_c
|
15 |
-
self.dim_f = dim_f
|
16 |
-
self.dim_t = dim_t
|
17 |
-
self.n_fft = n_fft
|
18 |
-
self.n_bins = n_fft // 2 + 1
|
19 |
-
self.hop_length = hop_length
|
20 |
-
self.window = nn.Parameter(torch.hann_window(window_length=self.n_fft, periodic=True), requires_grad=False)
|
21 |
-
self.freq_pad = nn.Parameter(torch.zeros([1, dim_c, self.n_bins - self.dim_f, self.dim_t]), requires_grad=False)
|
22 |
-
|
23 |
-
def get_optimizer(self):
|
24 |
-
if self.optimizer == 'rmsprop':
|
25 |
-
return torch.optim.RMSprop(self.parameters(), self.lr)
|
26 |
-
|
27 |
-
if self.optimizer == 'adamw':
|
28 |
-
return torch.optim.AdamW(self.parameters(), self.lr)
|
29 |
-
|
30 |
-
class ConvTDFNet(AbstractMDXNet):
|
31 |
-
def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length,
|
32 |
-
num_blocks, l, g, k, bn, bias, overlap):
|
33 |
-
|
34 |
-
super(ConvTDFNet, self).__init__(
|
35 |
-
target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap)
|
36 |
-
#self.save_hyperparameters()
|
37 |
-
|
38 |
-
self.num_blocks = num_blocks
|
39 |
-
self.l = l
|
40 |
-
self.g = g
|
41 |
-
self.k = k
|
42 |
-
self.bn = bn
|
43 |
-
self.bias = bias
|
44 |
-
|
45 |
-
if optimizer == 'rmsprop':
|
46 |
-
norm = nn.BatchNorm2d
|
47 |
-
|
48 |
-
if optimizer == 'adamw':
|
49 |
-
norm = lambda input:nn.GroupNorm(2, input)
|
50 |
-
|
51 |
-
self.n = num_blocks // 2
|
52 |
-
scale = (2, 2)
|
53 |
-
|
54 |
-
self.first_conv = nn.Sequential(
|
55 |
-
nn.Conv2d(in_channels=self.dim_c, out_channels=g, kernel_size=(1, 1)),
|
56 |
-
norm(g),
|
57 |
-
nn.ReLU(),
|
58 |
-
)
|
59 |
-
|
60 |
-
f = self.dim_f
|
61 |
-
c = g
|
62 |
-
self.encoding_blocks = nn.ModuleList()
|
63 |
-
self.ds = nn.ModuleList()
|
64 |
-
for i in range(self.n):
|
65 |
-
self.encoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
|
66 |
-
self.ds.append(
|
67 |
-
nn.Sequential(
|
68 |
-
nn.Conv2d(in_channels=c, out_channels=c + g, kernel_size=scale, stride=scale),
|
69 |
-
norm(c + g),
|
70 |
-
nn.ReLU()
|
71 |
-
)
|
72 |
-
)
|
73 |
-
f = f // 2
|
74 |
-
c += g
|
75 |
-
|
76 |
-
self.bottleneck_block = TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm)
|
77 |
-
|
78 |
-
self.decoding_blocks = nn.ModuleList()
|
79 |
-
self.us = nn.ModuleList()
|
80 |
-
for i in range(self.n):
|
81 |
-
self.us.append(
|
82 |
-
nn.Sequential(
|
83 |
-
nn.ConvTranspose2d(in_channels=c, out_channels=c - g, kernel_size=scale, stride=scale),
|
84 |
-
norm(c - g),
|
85 |
-
nn.ReLU()
|
86 |
-
)
|
87 |
-
)
|
88 |
-
f = f * 2
|
89 |
-
c -= g
|
90 |
-
|
91 |
-
self.decoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
|
92 |
-
|
93 |
-
self.final_conv = nn.Sequential(
|
94 |
-
nn.Conv2d(in_channels=c, out_channels=self.dim_c, kernel_size=(1, 1)),
|
95 |
-
)
|
96 |
-
|
97 |
-
def forward(self, x):
|
98 |
-
|
99 |
-
x = self.first_conv(x)
|
100 |
-
|
101 |
-
x = x.transpose(-1, -2)
|
102 |
-
|
103 |
-
ds_outputs = []
|
104 |
-
for i in range(self.n):
|
105 |
-
x = self.encoding_blocks[i](x)
|
106 |
-
ds_outputs.append(x)
|
107 |
-
x = self.ds[i](x)
|
108 |
-
|
109 |
-
x = self.bottleneck_block(x)
|
110 |
-
|
111 |
-
for i in range(self.n):
|
112 |
-
x = self.us[i](x)
|
113 |
-
x *= ds_outputs[-i - 1]
|
114 |
-
x = self.decoding_blocks[i](x)
|
115 |
-
|
116 |
-
x = x.transpose(-1, -2)
|
117 |
-
|
118 |
-
x = self.final_conv(x)
|
119 |
-
|
120 |
-
return x
|
121 |
-
|
122 |
-
class Mixer(nn.Module):
|
123 |
-
def __init__(self, device, mixer_path):
|
124 |
-
|
125 |
-
super(Mixer, self).__init__()
|
126 |
-
|
127 |
-
self.linear = nn.Linear((dim_s+1)*2, dim_s*2, bias=False)
|
128 |
-
|
129 |
-
self.load_state_dict(
|
130 |
-
torch.load(mixer_path, map_location=device)
|
131 |
-
)
|
132 |
-
|
133 |
-
def forward(self, x):
|
134 |
-
x = x.reshape(1,(dim_s+1)*2,-1).transpose(-1,-2)
|
135 |
-
x = self.linear(x)
|
136 |
-
return x.transpose(-1,-2).reshape(dim_s,2,-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/mixer.ckpt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ea781bd52c6a523b825fa6cdbb6189f52e318edd8b17e6fe404f76f7af8caa9c
|
3 |
-
size 1208
|
|
|
|
|
|
|
|
lib_v5/modules.py
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
|
5 |
-
class TFC(nn.Module):
|
6 |
-
def __init__(self, c, l, k, norm):
|
7 |
-
super(TFC, self).__init__()
|
8 |
-
|
9 |
-
self.H = nn.ModuleList()
|
10 |
-
for i in range(l):
|
11 |
-
self.H.append(
|
12 |
-
nn.Sequential(
|
13 |
-
nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
|
14 |
-
norm(c),
|
15 |
-
nn.ReLU(),
|
16 |
-
)
|
17 |
-
)
|
18 |
-
|
19 |
-
def forward(self, x):
|
20 |
-
for h in self.H:
|
21 |
-
x = h(x)
|
22 |
-
return x
|
23 |
-
|
24 |
-
|
25 |
-
class DenseTFC(nn.Module):
|
26 |
-
def __init__(self, c, l, k, norm):
|
27 |
-
super(DenseTFC, self).__init__()
|
28 |
-
|
29 |
-
self.conv = nn.ModuleList()
|
30 |
-
for i in range(l):
|
31 |
-
self.conv.append(
|
32 |
-
nn.Sequential(
|
33 |
-
nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
|
34 |
-
norm(c),
|
35 |
-
nn.ReLU(),
|
36 |
-
)
|
37 |
-
)
|
38 |
-
|
39 |
-
def forward(self, x):
|
40 |
-
for layer in self.conv[:-1]:
|
41 |
-
x = torch.cat([layer(x), x], 1)
|
42 |
-
return self.conv[-1](x)
|
43 |
-
|
44 |
-
|
45 |
-
class TFC_TDF(nn.Module):
|
46 |
-
def __init__(self, c, l, f, k, bn, dense=False, bias=True, norm=nn.BatchNorm2d):
|
47 |
-
|
48 |
-
super(TFC_TDF, self).__init__()
|
49 |
-
|
50 |
-
self.use_tdf = bn is not None
|
51 |
-
|
52 |
-
self.tfc = DenseTFC(c, l, k, norm) if dense else TFC(c, l, k, norm)
|
53 |
-
|
54 |
-
if self.use_tdf:
|
55 |
-
if bn == 0:
|
56 |
-
self.tdf = nn.Sequential(
|
57 |
-
nn.Linear(f, f, bias=bias),
|
58 |
-
norm(c),
|
59 |
-
nn.ReLU()
|
60 |
-
)
|
61 |
-
else:
|
62 |
-
self.tdf = nn.Sequential(
|
63 |
-
nn.Linear(f, f // bn, bias=bias),
|
64 |
-
norm(c),
|
65 |
-
nn.ReLU(),
|
66 |
-
nn.Linear(f // bn, f, bias=bias),
|
67 |
-
norm(c),
|
68 |
-
nn.ReLU()
|
69 |
-
)
|
70 |
-
|
71 |
-
def forward(self, x):
|
72 |
-
x = self.tfc(x)
|
73 |
-
return x + self.tdf(x) if self.use_tdf else x
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/pyrb.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import subprocess
|
3 |
-
import tempfile
|
4 |
-
import six
|
5 |
-
import numpy as np
|
6 |
-
import soundfile as sf
|
7 |
-
import sys
|
8 |
-
|
9 |
-
if getattr(sys, 'frozen', False):
|
10 |
-
BASE_PATH_RUB = sys._MEIPASS
|
11 |
-
else:
|
12 |
-
BASE_PATH_RUB = os.path.dirname(os.path.abspath(__file__))
|
13 |
-
|
14 |
-
__all__ = ['time_stretch', 'pitch_shift']
|
15 |
-
|
16 |
-
__RUBBERBAND_UTIL = os.path.join(BASE_PATH_RUB, 'rubberband')
|
17 |
-
|
18 |
-
if six.PY2:
|
19 |
-
DEVNULL = open(os.devnull, 'w')
|
20 |
-
else:
|
21 |
-
DEVNULL = subprocess.DEVNULL
|
22 |
-
|
23 |
-
def __rubberband(y, sr, **kwargs):
|
24 |
-
|
25 |
-
assert sr > 0
|
26 |
-
|
27 |
-
# Get the input and output tempfile
|
28 |
-
fd, infile = tempfile.mkstemp(suffix='.wav')
|
29 |
-
os.close(fd)
|
30 |
-
fd, outfile = tempfile.mkstemp(suffix='.wav')
|
31 |
-
os.close(fd)
|
32 |
-
|
33 |
-
# dump the audio
|
34 |
-
sf.write(infile, y, sr)
|
35 |
-
|
36 |
-
try:
|
37 |
-
# Execute rubberband
|
38 |
-
arguments = [__RUBBERBAND_UTIL, '-q']
|
39 |
-
|
40 |
-
for key, value in six.iteritems(kwargs):
|
41 |
-
arguments.append(str(key))
|
42 |
-
arguments.append(str(value))
|
43 |
-
|
44 |
-
arguments.extend([infile, outfile])
|
45 |
-
|
46 |
-
subprocess.check_call(arguments, stdout=DEVNULL, stderr=DEVNULL)
|
47 |
-
|
48 |
-
# Load the processed audio.
|
49 |
-
y_out, _ = sf.read(outfile, always_2d=True)
|
50 |
-
|
51 |
-
# make sure that output dimensions matches input
|
52 |
-
if y.ndim == 1:
|
53 |
-
y_out = np.squeeze(y_out)
|
54 |
-
|
55 |
-
except OSError as exc:
|
56 |
-
six.raise_from(RuntimeError('Failed to execute rubberband. '
|
57 |
-
'Please verify that rubberband-cli '
|
58 |
-
'is installed.'),
|
59 |
-
exc)
|
60 |
-
|
61 |
-
finally:
|
62 |
-
# Remove temp files
|
63 |
-
os.unlink(infile)
|
64 |
-
os.unlink(outfile)
|
65 |
-
|
66 |
-
return y_out
|
67 |
-
|
68 |
-
def time_stretch(y, sr, rate, rbargs=None):
|
69 |
-
if rate <= 0:
|
70 |
-
raise ValueError('rate must be strictly positive')
|
71 |
-
|
72 |
-
if rate == 1.0:
|
73 |
-
return y
|
74 |
-
|
75 |
-
if rbargs is None:
|
76 |
-
rbargs = dict()
|
77 |
-
|
78 |
-
rbargs.setdefault('--tempo', rate)
|
79 |
-
|
80 |
-
return __rubberband(y, sr, **rbargs)
|
81 |
-
|
82 |
-
def pitch_shift(y, sr, n_steps, rbargs=None):
|
83 |
-
|
84 |
-
if n_steps == 0:
|
85 |
-
return y
|
86 |
-
|
87 |
-
if rbargs is None:
|
88 |
-
rbargs = dict()
|
89 |
-
|
90 |
-
rbargs.setdefault('--pitch', n_steps)
|
91 |
-
|
92 |
-
return __rubberband(y, sr, **rbargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/results.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
|
3 |
-
"""
|
4 |
-
Matchering - Audio Matching and Mastering Python Library
|
5 |
-
Copyright (C) 2016-2022 Sergree
|
6 |
-
|
7 |
-
This program is free software: you can redistribute it and/or modify
|
8 |
-
it under the terms of the GNU General Public License as published by
|
9 |
-
the Free Software Foundation, either version 3 of the License, or
|
10 |
-
(at your option) any later version.
|
11 |
-
|
12 |
-
This program is distributed in the hope that it will be useful,
|
13 |
-
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
-
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
-
GNU General Public License for more details.
|
16 |
-
|
17 |
-
You should have received a copy of the GNU General Public License
|
18 |
-
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
19 |
-
"""
|
20 |
-
|
21 |
-
import os
|
22 |
-
import soundfile as sf
|
23 |
-
|
24 |
-
|
25 |
-
class Result:
|
26 |
-
def __init__(
|
27 |
-
self, file: str, subtype: str, use_limiter: bool = True, normalize: bool = True
|
28 |
-
):
|
29 |
-
_, file_ext = os.path.splitext(file)
|
30 |
-
file_ext = file_ext[1:].upper()
|
31 |
-
if not sf.check_format(file_ext):
|
32 |
-
raise TypeError(f"{file_ext} format is not supported")
|
33 |
-
if not sf.check_format(file_ext, subtype):
|
34 |
-
raise TypeError(f"{file_ext} format does not have {subtype} subtype")
|
35 |
-
self.file = file
|
36 |
-
self.subtype = subtype
|
37 |
-
self.use_limiter = use_limiter
|
38 |
-
self.normalize = normalize
|
39 |
-
|
40 |
-
|
41 |
-
def pcm16(file: str) -> Result:
|
42 |
-
return Result(file, "PCM_16")
|
43 |
-
|
44 |
-
def pcm24(file: str) -> Result:
|
45 |
-
return Result(file, "FLOAT")
|
46 |
-
|
47 |
-
def save_audiofile(file: str, wav_set="PCM_16") -> Result:
|
48 |
-
return Result(file, wav_set)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/spec_utils.py
DELETED
@@ -1,1241 +0,0 @@
|
|
1 |
-
import audioread
|
2 |
-
import librosa
|
3 |
-
import numpy as np
|
4 |
-
import soundfile as sf
|
5 |
-
import math
|
6 |
-
import platform
|
7 |
-
import traceback
|
8 |
-
from . import pyrb
|
9 |
-
from scipy.signal import correlate, hilbert
|
10 |
-
import io
|
11 |
-
|
12 |
-
OPERATING_SYSTEM = platform.system()
|
13 |
-
SYSTEM_ARCH = platform.platform()
|
14 |
-
SYSTEM_PROC = platform.processor()
|
15 |
-
ARM = 'arm'
|
16 |
-
|
17 |
-
AUTO_PHASE = "Automatic"
|
18 |
-
POSITIVE_PHASE = "Positive Phase"
|
19 |
-
NEGATIVE_PHASE = "Negative Phase"
|
20 |
-
NONE_P = "None",
|
21 |
-
LOW_P = "Shifts: Low",
|
22 |
-
MED_P = "Shifts: Medium",
|
23 |
-
HIGH_P = "Shifts: High",
|
24 |
-
VHIGH_P = "Shifts: Very High"
|
25 |
-
MAXIMUM_P = "Shifts: Maximum"
|
26 |
-
|
27 |
-
progress_value = 0
|
28 |
-
last_update_time = 0
|
29 |
-
is_macos = False
|
30 |
-
|
31 |
-
if OPERATING_SYSTEM == 'Windows':
|
32 |
-
from pyrubberband import pyrb
|
33 |
-
else:
|
34 |
-
from . import pyrb
|
35 |
-
|
36 |
-
if OPERATING_SYSTEM == 'Darwin':
|
37 |
-
wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest"
|
38 |
-
wav_resolution_float_resampling = "kaiser_best" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else wav_resolution
|
39 |
-
is_macos = True
|
40 |
-
else:
|
41 |
-
wav_resolution = "sinc_fastest"
|
42 |
-
wav_resolution_float_resampling = wav_resolution
|
43 |
-
|
44 |
-
MAX_SPEC = 'Max Spec'
|
45 |
-
MIN_SPEC = 'Min Spec'
|
46 |
-
LIN_ENSE = 'Linear Ensemble'
|
47 |
-
|
48 |
-
MAX_WAV = MAX_SPEC
|
49 |
-
MIN_WAV = MIN_SPEC
|
50 |
-
|
51 |
-
AVERAGE = 'Average'
|
52 |
-
|
53 |
-
def crop_center(h1, h2):
|
54 |
-
h1_shape = h1.size()
|
55 |
-
h2_shape = h2.size()
|
56 |
-
|
57 |
-
if h1_shape[3] == h2_shape[3]:
|
58 |
-
return h1
|
59 |
-
elif h1_shape[3] < h2_shape[3]:
|
60 |
-
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
|
61 |
-
|
62 |
-
s_time = (h1_shape[3] - h2_shape[3]) // 2
|
63 |
-
e_time = s_time + h2_shape[3]
|
64 |
-
h1 = h1[:, :, :, s_time:e_time]
|
65 |
-
|
66 |
-
return h1
|
67 |
-
|
68 |
-
def preprocess(X_spec):
|
69 |
-
X_mag = np.abs(X_spec)
|
70 |
-
X_phase = np.angle(X_spec)
|
71 |
-
|
72 |
-
return X_mag, X_phase
|
73 |
-
|
74 |
-
def make_padding(width, cropsize, offset):
|
75 |
-
left = offset
|
76 |
-
roi_size = cropsize - offset * 2
|
77 |
-
if roi_size == 0:
|
78 |
-
roi_size = cropsize
|
79 |
-
right = roi_size - (width % roi_size) + left
|
80 |
-
|
81 |
-
return left, right, roi_size
|
82 |
-
|
83 |
-
def normalize(wave, is_normalize=False):
|
84 |
-
"""Normalize audio"""
|
85 |
-
|
86 |
-
maxv = np.abs(wave).max()
|
87 |
-
if maxv > 1.0:
|
88 |
-
if is_normalize:
|
89 |
-
print("Above clipping threshold.")
|
90 |
-
wave /= maxv
|
91 |
-
|
92 |
-
return wave
|
93 |
-
|
94 |
-
def auto_transpose(audio_array:np.ndarray):
|
95 |
-
"""
|
96 |
-
Ensure that the audio array is in the (channels, samples) format.
|
97 |
-
|
98 |
-
Parameters:
|
99 |
-
audio_array (ndarray): Input audio array.
|
100 |
-
|
101 |
-
Returns:
|
102 |
-
ndarray: Transposed audio array if necessary.
|
103 |
-
"""
|
104 |
-
|
105 |
-
# If the second dimension is 2 (indicating stereo channels), transpose the array
|
106 |
-
if audio_array.shape[1] == 2:
|
107 |
-
return audio_array.T
|
108 |
-
return audio_array
|
109 |
-
|
110 |
-
def write_array_to_mem(audio_data, subtype):
|
111 |
-
if isinstance(audio_data, np.ndarray):
|
112 |
-
audio_buffer = io.BytesIO()
|
113 |
-
sf.write(audio_buffer, audio_data, 44100, subtype=subtype, format='WAV')
|
114 |
-
audio_buffer.seek(0)
|
115 |
-
return audio_buffer
|
116 |
-
else:
|
117 |
-
return audio_data
|
118 |
-
|
119 |
-
def spectrogram_to_image(spec, mode='magnitude'):
|
120 |
-
if mode == 'magnitude':
|
121 |
-
if np.iscomplexobj(spec):
|
122 |
-
y = np.abs(spec)
|
123 |
-
else:
|
124 |
-
y = spec
|
125 |
-
y = np.log10(y ** 2 + 1e-8)
|
126 |
-
elif mode == 'phase':
|
127 |
-
if np.iscomplexobj(spec):
|
128 |
-
y = np.angle(spec)
|
129 |
-
else:
|
130 |
-
y = spec
|
131 |
-
|
132 |
-
y -= y.min()
|
133 |
-
y *= 255 / y.max()
|
134 |
-
img = np.uint8(y)
|
135 |
-
|
136 |
-
if y.ndim == 3:
|
137 |
-
img = img.transpose(1, 2, 0)
|
138 |
-
img = np.concatenate([
|
139 |
-
np.max(img, axis=2, keepdims=True), img
|
140 |
-
], axis=2)
|
141 |
-
|
142 |
-
return img
|
143 |
-
|
144 |
-
def reduce_vocal_aggressively(X, y, softmask):
|
145 |
-
v = X - y
|
146 |
-
y_mag_tmp = np.abs(y)
|
147 |
-
v_mag_tmp = np.abs(v)
|
148 |
-
|
149 |
-
v_mask = v_mag_tmp > y_mag_tmp
|
150 |
-
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
|
151 |
-
|
152 |
-
return y_mag * np.exp(1.j * np.angle(y))
|
153 |
-
|
154 |
-
def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
|
155 |
-
mask = y_mask
|
156 |
-
|
157 |
-
try:
|
158 |
-
if min_range < fade_size * 2:
|
159 |
-
raise ValueError('min_range must be >= fade_size * 2')
|
160 |
-
|
161 |
-
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
|
162 |
-
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
163 |
-
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
164 |
-
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
|
165 |
-
weight = np.zeros_like(y_mask)
|
166 |
-
if len(artifact_idx) > 0:
|
167 |
-
start_idx = start_idx[artifact_idx]
|
168 |
-
end_idx = end_idx[artifact_idx]
|
169 |
-
old_e = None
|
170 |
-
for s, e in zip(start_idx, end_idx):
|
171 |
-
if old_e is not None and s - old_e < fade_size:
|
172 |
-
s = old_e - fade_size * 2
|
173 |
-
|
174 |
-
if s != 0:
|
175 |
-
weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
|
176 |
-
else:
|
177 |
-
s -= fade_size
|
178 |
-
|
179 |
-
if e != y_mask.shape[2]:
|
180 |
-
weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
|
181 |
-
else:
|
182 |
-
e += fade_size
|
183 |
-
|
184 |
-
weight[:, :, s + fade_size:e - fade_size] = 1
|
185 |
-
old_e = e
|
186 |
-
|
187 |
-
v_mask = 1 - y_mask
|
188 |
-
y_mask += weight * v_mask
|
189 |
-
|
190 |
-
mask = y_mask
|
191 |
-
except Exception as e:
|
192 |
-
error_name = f'{type(e).__name__}'
|
193 |
-
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
194 |
-
message = f'{error_name}: "{e}"\n{traceback_text}"'
|
195 |
-
print('Post Process Failed: ', message)
|
196 |
-
|
197 |
-
return mask
|
198 |
-
|
199 |
-
def align_wave_head_and_tail(a, b):
|
200 |
-
l = min([a[0].size, b[0].size])
|
201 |
-
|
202 |
-
return a[:l,:l], b[:l,:l]
|
203 |
-
|
204 |
-
def convert_channels(spec, mp, band):
|
205 |
-
cc = mp.param['band'][band].get('convert_channels')
|
206 |
-
|
207 |
-
if 'mid_side_c' == cc:
|
208 |
-
spec_left = np.add(spec[0], spec[1] * .25)
|
209 |
-
spec_right = np.subtract(spec[1], spec[0] * .25)
|
210 |
-
elif 'mid_side' == cc:
|
211 |
-
spec_left = np.add(spec[0], spec[1]) / 2
|
212 |
-
spec_right = np.subtract(spec[0], spec[1])
|
213 |
-
elif 'stereo_n' == cc:
|
214 |
-
spec_left = np.add(spec[0], spec[1] * .25) / 0.9375
|
215 |
-
spec_right = np.add(spec[1], spec[0] * .25) / 0.9375
|
216 |
-
else:
|
217 |
-
return spec
|
218 |
-
|
219 |
-
return np.asfortranarray([spec_left, spec_right])
|
220 |
-
|
221 |
-
def combine_spectrograms(specs, mp, is_v51_model=False):
|
222 |
-
l = min([specs[i].shape[2] for i in specs])
|
223 |
-
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
|
224 |
-
offset = 0
|
225 |
-
bands_n = len(mp.param['band'])
|
226 |
-
|
227 |
-
for d in range(1, bands_n + 1):
|
228 |
-
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
|
229 |
-
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
|
230 |
-
offset += h
|
231 |
-
|
232 |
-
if offset > mp.param['bins']:
|
233 |
-
raise ValueError('Too much bins')
|
234 |
-
|
235 |
-
# lowpass fiter
|
236 |
-
|
237 |
-
if mp.param['pre_filter_start'] > 0:
|
238 |
-
if is_v51_model:
|
239 |
-
spec_c *= get_lp_filter_mask(spec_c.shape[1], mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
|
240 |
-
else:
|
241 |
-
if bands_n == 1:
|
242 |
-
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
|
243 |
-
else:
|
244 |
-
gp = 1
|
245 |
-
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
|
246 |
-
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
|
247 |
-
gp = g
|
248 |
-
spec_c[:, b, :] *= g
|
249 |
-
|
250 |
-
return np.asfortranarray(spec_c)
|
251 |
-
|
252 |
-
def wave_to_spectrogram(wave, hop_length, n_fft, mp, band, is_v51_model=False):
|
253 |
-
|
254 |
-
if wave.ndim == 1:
|
255 |
-
wave = np.asfortranarray([wave,wave])
|
256 |
-
|
257 |
-
if not is_v51_model:
|
258 |
-
if mp.param['reverse']:
|
259 |
-
wave_left = np.flip(np.asfortranarray(wave[0]))
|
260 |
-
wave_right = np.flip(np.asfortranarray(wave[1]))
|
261 |
-
elif mp.param['mid_side']:
|
262 |
-
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
263 |
-
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
264 |
-
elif mp.param['mid_side_b2']:
|
265 |
-
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
|
266 |
-
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
|
267 |
-
else:
|
268 |
-
wave_left = np.asfortranarray(wave[0])
|
269 |
-
wave_right = np.asfortranarray(wave[1])
|
270 |
-
else:
|
271 |
-
wave_left = np.asfortranarray(wave[0])
|
272 |
-
wave_right = np.asfortranarray(wave[1])
|
273 |
-
|
274 |
-
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
|
275 |
-
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
276 |
-
|
277 |
-
spec = np.asfortranarray([spec_left, spec_right])
|
278 |
-
|
279 |
-
if is_v51_model:
|
280 |
-
spec = convert_channels(spec, mp, band)
|
281 |
-
|
282 |
-
return spec
|
283 |
-
|
284 |
-
def spectrogram_to_wave(spec, hop_length=1024, mp={}, band=0, is_v51_model=True):
|
285 |
-
spec_left = np.asfortranarray(spec[0])
|
286 |
-
spec_right = np.asfortranarray(spec[1])
|
287 |
-
|
288 |
-
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
289 |
-
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
290 |
-
|
291 |
-
if is_v51_model:
|
292 |
-
cc = mp.param['band'][band].get('convert_channels')
|
293 |
-
if 'mid_side_c' == cc:
|
294 |
-
return np.asfortranarray([np.subtract(wave_left / 1.0625, wave_right / 4.25), np.add(wave_right / 1.0625, wave_left / 4.25)])
|
295 |
-
elif 'mid_side' == cc:
|
296 |
-
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
297 |
-
elif 'stereo_n' == cc:
|
298 |
-
return np.asfortranarray([np.subtract(wave_left, wave_right * .25), np.subtract(wave_right, wave_left * .25)])
|
299 |
-
else:
|
300 |
-
if mp.param['reverse']:
|
301 |
-
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
302 |
-
elif mp.param['mid_side']:
|
303 |
-
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
304 |
-
elif mp.param['mid_side_b2']:
|
305 |
-
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
|
306 |
-
|
307 |
-
return np.asfortranarray([wave_left, wave_right])
|
308 |
-
|
309 |
-
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None, is_v51_model=False):
|
310 |
-
bands_n = len(mp.param['band'])
|
311 |
-
offset = 0
|
312 |
-
|
313 |
-
for d in range(1, bands_n + 1):
|
314 |
-
bp = mp.param['band'][d]
|
315 |
-
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
|
316 |
-
h = bp['crop_stop'] - bp['crop_start']
|
317 |
-
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
|
318 |
-
|
319 |
-
offset += h
|
320 |
-
if d == bands_n: # higher
|
321 |
-
if extra_bins_h: # if --high_end_process bypass
|
322 |
-
max_bin = bp['n_fft'] // 2
|
323 |
-
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
|
324 |
-
if bp['hpf_start'] > 0:
|
325 |
-
if is_v51_model:
|
326 |
-
spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
|
327 |
-
else:
|
328 |
-
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
329 |
-
if bands_n == 1:
|
330 |
-
wave = spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model)
|
331 |
-
else:
|
332 |
-
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
|
333 |
-
else:
|
334 |
-
sr = mp.param['band'][d+1]['sr']
|
335 |
-
if d == 1: # lower
|
336 |
-
if is_v51_model:
|
337 |
-
spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
|
338 |
-
else:
|
339 |
-
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
340 |
-
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model), bp['sr'], sr, res_type=wav_resolution)
|
341 |
-
else: # mid
|
342 |
-
if is_v51_model:
|
343 |
-
spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
|
344 |
-
spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
|
345 |
-
else:
|
346 |
-
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
347 |
-
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
348 |
-
|
349 |
-
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
|
350 |
-
wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution)
|
351 |
-
|
352 |
-
return wave
|
353 |
-
|
354 |
-
def get_lp_filter_mask(n_bins, bin_start, bin_stop):
|
355 |
-
mask = np.concatenate([
|
356 |
-
np.ones((bin_start - 1, 1)),
|
357 |
-
np.linspace(1, 0, bin_stop - bin_start + 1)[:, None],
|
358 |
-
np.zeros((n_bins - bin_stop, 1))
|
359 |
-
], axis=0)
|
360 |
-
|
361 |
-
return mask
|
362 |
-
|
363 |
-
def get_hp_filter_mask(n_bins, bin_start, bin_stop):
|
364 |
-
mask = np.concatenate([
|
365 |
-
np.zeros((bin_stop + 1, 1)),
|
366 |
-
np.linspace(0, 1, 1 + bin_start - bin_stop)[:, None],
|
367 |
-
np.ones((n_bins - bin_start - 2, 1))
|
368 |
-
], axis=0)
|
369 |
-
|
370 |
-
return mask
|
371 |
-
|
372 |
-
def fft_lp_filter(spec, bin_start, bin_stop):
|
373 |
-
g = 1.0
|
374 |
-
for b in range(bin_start, bin_stop):
|
375 |
-
g -= 1 / (bin_stop - bin_start)
|
376 |
-
spec[:, b, :] = g * spec[:, b, :]
|
377 |
-
|
378 |
-
spec[:, bin_stop:, :] *= 0
|
379 |
-
|
380 |
-
return spec
|
381 |
-
|
382 |
-
def fft_hp_filter(spec, bin_start, bin_stop):
|
383 |
-
g = 1.0
|
384 |
-
for b in range(bin_start, bin_stop, -1):
|
385 |
-
g -= 1 / (bin_start - bin_stop)
|
386 |
-
spec[:, b, :] = g * spec[:, b, :]
|
387 |
-
|
388 |
-
spec[:, 0:bin_stop+1, :] *= 0
|
389 |
-
|
390 |
-
return spec
|
391 |
-
|
392 |
-
def spectrogram_to_wave_old(spec, hop_length=1024):
|
393 |
-
if spec.ndim == 2:
|
394 |
-
wave = librosa.istft(spec, hop_length=hop_length)
|
395 |
-
elif spec.ndim == 3:
|
396 |
-
spec_left = np.asfortranarray(spec[0])
|
397 |
-
spec_right = np.asfortranarray(spec[1])
|
398 |
-
|
399 |
-
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
400 |
-
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
401 |
-
wave = np.asfortranarray([wave_left, wave_right])
|
402 |
-
|
403 |
-
return wave
|
404 |
-
|
405 |
-
def wave_to_spectrogram_old(wave, hop_length, n_fft):
|
406 |
-
wave_left = np.asfortranarray(wave[0])
|
407 |
-
wave_right = np.asfortranarray(wave[1])
|
408 |
-
|
409 |
-
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
|
410 |
-
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
411 |
-
|
412 |
-
spec = np.asfortranarray([spec_left, spec_right])
|
413 |
-
|
414 |
-
return spec
|
415 |
-
|
416 |
-
def mirroring(a, spec_m, input_high_end, mp):
|
417 |
-
if 'mirroring' == a:
|
418 |
-
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
|
419 |
-
mirror = mirror * np.exp(1.j * np.angle(input_high_end))
|
420 |
-
|
421 |
-
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
|
422 |
-
|
423 |
-
if 'mirroring2' == a:
|
424 |
-
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
|
425 |
-
mi = np.multiply(mirror, input_high_end * 1.7)
|
426 |
-
|
427 |
-
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
|
428 |
-
|
429 |
-
def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
|
430 |
-
aggr = aggressiveness['value'] * 2
|
431 |
-
|
432 |
-
if aggr != 0:
|
433 |
-
if is_non_accom_stem:
|
434 |
-
aggr = 1 - aggr
|
435 |
-
|
436 |
-
aggr = [aggr, aggr]
|
437 |
-
|
438 |
-
if aggressiveness['aggr_correction'] is not None:
|
439 |
-
aggr[0] += aggressiveness['aggr_correction']['left']
|
440 |
-
aggr[1] += aggressiveness['aggr_correction']['right']
|
441 |
-
|
442 |
-
for ch in range(2):
|
443 |
-
mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3)
|
444 |
-
mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch])
|
445 |
-
|
446 |
-
return mask
|
447 |
-
|
448 |
-
def stft(wave, nfft, hl):
|
449 |
-
wave_left = np.asfortranarray(wave[0])
|
450 |
-
wave_right = np.asfortranarray(wave[1])
|
451 |
-
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
|
452 |
-
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
|
453 |
-
spec = np.asfortranarray([spec_left, spec_right])
|
454 |
-
|
455 |
-
return spec
|
456 |
-
|
457 |
-
def istft(spec, hl):
|
458 |
-
spec_left = np.asfortranarray(spec[0])
|
459 |
-
spec_right = np.asfortranarray(spec[1])
|
460 |
-
wave_left = librosa.istft(spec_left, hop_length=hl)
|
461 |
-
wave_right = librosa.istft(spec_right, hop_length=hl)
|
462 |
-
wave = np.asfortranarray([wave_left, wave_right])
|
463 |
-
|
464 |
-
return wave
|
465 |
-
|
466 |
-
def spec_effects(wave, algorithm='Default', value=None):
|
467 |
-
spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)]
|
468 |
-
if algorithm == 'Min_Mag':
|
469 |
-
v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
|
470 |
-
wave = istft(v_spec_m,1024)
|
471 |
-
elif algorithm == 'Max_Mag':
|
472 |
-
v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
|
473 |
-
wave = istft(v_spec_m,1024)
|
474 |
-
elif algorithm == 'Default':
|
475 |
-
wave = (wave[1] * value) + (wave[0] * (1-value))
|
476 |
-
elif algorithm == 'Invert_p':
|
477 |
-
X_mag = np.abs(spec[0])
|
478 |
-
y_mag = np.abs(spec[1])
|
479 |
-
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
480 |
-
v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
|
481 |
-
wave = istft(v_spec,1024)
|
482 |
-
|
483 |
-
return wave
|
484 |
-
|
485 |
-
def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
|
486 |
-
wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
|
487 |
-
|
488 |
-
if wave.ndim == 1:
|
489 |
-
wave = np.asfortranarray([wave,wave])
|
490 |
-
|
491 |
-
return wave
|
492 |
-
|
493 |
-
def wave_to_spectrogram_no_mp(wave):
|
494 |
-
|
495 |
-
spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
|
496 |
-
|
497 |
-
if spec.ndim == 1:
|
498 |
-
spec = np.asfortranarray([spec,spec])
|
499 |
-
|
500 |
-
return spec
|
501 |
-
|
502 |
-
def invert_audio(specs, invert_p=True):
|
503 |
-
|
504 |
-
ln = min([specs[0].shape[2], specs[1].shape[2]])
|
505 |
-
specs[0] = specs[0][:,:,:ln]
|
506 |
-
specs[1] = specs[1][:,:,:ln]
|
507 |
-
|
508 |
-
if invert_p:
|
509 |
-
X_mag = np.abs(specs[0])
|
510 |
-
y_mag = np.abs(specs[1])
|
511 |
-
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
512 |
-
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
|
513 |
-
else:
|
514 |
-
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
|
515 |
-
v_spec = specs[0] - specs[1]
|
516 |
-
|
517 |
-
return v_spec
|
518 |
-
|
519 |
-
def invert_stem(mixture, stem):
|
520 |
-
mixture = wave_to_spectrogram_no_mp(mixture)
|
521 |
-
stem = wave_to_spectrogram_no_mp(stem)
|
522 |
-
output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))
|
523 |
-
|
524 |
-
return -output.T
|
525 |
-
|
526 |
-
def ensembling(a, inputs, is_wavs=False):
|
527 |
-
|
528 |
-
for i in range(1, len(inputs)):
|
529 |
-
if i == 1:
|
530 |
-
input = inputs[0]
|
531 |
-
|
532 |
-
if is_wavs:
|
533 |
-
ln = min([input.shape[1], inputs[i].shape[1]])
|
534 |
-
input = input[:,:ln]
|
535 |
-
inputs[i] = inputs[i][:,:ln]
|
536 |
-
else:
|
537 |
-
ln = min([input.shape[2], inputs[i].shape[2]])
|
538 |
-
input = input[:,:,:ln]
|
539 |
-
inputs[i] = inputs[i][:,:,:ln]
|
540 |
-
|
541 |
-
if MIN_SPEC == a:
|
542 |
-
input = np.where(np.abs(inputs[i]) <= np.abs(input), inputs[i], input)
|
543 |
-
if MAX_SPEC == a:
|
544 |
-
input = np.where(np.abs(inputs[i]) >= np.abs(input), inputs[i], input)
|
545 |
-
|
546 |
-
#linear_ensemble
|
547 |
-
#input = ensemble_wav(inputs, split_size=1)
|
548 |
-
|
549 |
-
return input
|
550 |
-
|
551 |
-
def ensemble_for_align(waves):
|
552 |
-
|
553 |
-
specs = []
|
554 |
-
|
555 |
-
for wav in waves:
|
556 |
-
spec = wave_to_spectrogram_no_mp(wav.T)
|
557 |
-
specs.append(spec)
|
558 |
-
|
559 |
-
wav_aligned = spectrogram_to_wave_no_mp(ensembling(MIN_SPEC, specs)).T
|
560 |
-
wav_aligned = match_array_shapes(wav_aligned, waves[1], is_swap=True)
|
561 |
-
|
562 |
-
return wav_aligned
|
563 |
-
|
564 |
-
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path, is_wave=False, is_array=False):
|
565 |
-
|
566 |
-
wavs_ = []
|
567 |
-
|
568 |
-
if algorithm == AVERAGE:
|
569 |
-
output = average_audio(audio_input)
|
570 |
-
samplerate = 44100
|
571 |
-
else:
|
572 |
-
specs = []
|
573 |
-
|
574 |
-
for i in range(len(audio_input)):
|
575 |
-
wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
|
576 |
-
wavs_.append(wave)
|
577 |
-
spec = wave if is_wave else wave_to_spectrogram_no_mp(wave)
|
578 |
-
specs.append(spec)
|
579 |
-
|
580 |
-
wave_shapes = [w.shape[1] for w in wavs_]
|
581 |
-
target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
|
582 |
-
|
583 |
-
if is_wave:
|
584 |
-
output = ensembling(algorithm, specs, is_wavs=True)
|
585 |
-
else:
|
586 |
-
output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
|
587 |
-
|
588 |
-
output = to_shape(output, target_shape.shape)
|
589 |
-
|
590 |
-
sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)
|
591 |
-
|
592 |
-
def to_shape(x, target_shape):
|
593 |
-
padding_list = []
|
594 |
-
for x_dim, target_dim in zip(x.shape, target_shape):
|
595 |
-
pad_value = (target_dim - x_dim)
|
596 |
-
pad_tuple = ((0, pad_value))
|
597 |
-
padding_list.append(pad_tuple)
|
598 |
-
|
599 |
-
return np.pad(x, tuple(padding_list), mode='constant')
|
600 |
-
|
601 |
-
def to_shape_minimize(x: np.ndarray, target_shape):
|
602 |
-
|
603 |
-
padding_list = []
|
604 |
-
for x_dim, target_dim in zip(x.shape, target_shape):
|
605 |
-
pad_value = (target_dim - x_dim)
|
606 |
-
pad_tuple = ((0, pad_value))
|
607 |
-
padding_list.append(pad_tuple)
|
608 |
-
|
609 |
-
return np.pad(x, tuple(padding_list), mode='constant')
|
610 |
-
|
611 |
-
def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024):
|
612 |
-
"""
|
613 |
-
Detect silence at the beginning of an audio signal.
|
614 |
-
|
615 |
-
:param audio: np.array, audio signal
|
616 |
-
:param sr: int, sample rate
|
617 |
-
:param silence_threshold: float, magnitude threshold below which is considered silence
|
618 |
-
:param frame_length: int, the number of samples to consider for each check
|
619 |
-
|
620 |
-
:return: float, duration of the leading silence in milliseconds
|
621 |
-
"""
|
622 |
-
|
623 |
-
if len(audio.shape) == 2:
|
624 |
-
# If stereo, pick the channel with more energy to determine the silence
|
625 |
-
channel = np.argmax(np.sum(np.abs(audio), axis=1))
|
626 |
-
audio = audio[channel]
|
627 |
-
|
628 |
-
for i in range(0, len(audio), frame_length):
|
629 |
-
if np.max(np.abs(audio[i:i+frame_length])) > silence_threshold:
|
630 |
-
return (i / sr) * 1000
|
631 |
-
|
632 |
-
return (len(audio) / sr) * 1000
|
633 |
-
|
634 |
-
def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024):
|
635 |
-
"""
|
636 |
-
Adjust the leading silence of the target_audio to match the leading silence of the reference_audio.
|
637 |
-
|
638 |
-
:param target_audio: np.array, audio signal that will have its silence adjusted
|
639 |
-
:param reference_audio: np.array, audio signal used as a reference
|
640 |
-
:param sr: int, sample rate
|
641 |
-
:param silence_threshold: float, magnitude threshold below which is considered silence
|
642 |
-
:param frame_length: int, the number of samples to consider for each check
|
643 |
-
|
644 |
-
:return: np.array, target_audio adjusted to have the same leading silence as reference_audio
|
645 |
-
"""
|
646 |
-
|
647 |
-
def find_silence_end(audio):
|
648 |
-
if len(audio.shape) == 2:
|
649 |
-
# If stereo, pick the channel with more energy to determine the silence
|
650 |
-
channel = np.argmax(np.sum(np.abs(audio), axis=1))
|
651 |
-
audio_mono = audio[channel]
|
652 |
-
else:
|
653 |
-
audio_mono = audio
|
654 |
-
|
655 |
-
for i in range(0, len(audio_mono), frame_length):
|
656 |
-
if np.max(np.abs(audio_mono[i:i+frame_length])) > silence_threshold:
|
657 |
-
return i
|
658 |
-
return len(audio_mono)
|
659 |
-
|
660 |
-
ref_silence_end = find_silence_end(reference_audio)
|
661 |
-
target_silence_end = find_silence_end(target_audio)
|
662 |
-
silence_difference = ref_silence_end - target_silence_end
|
663 |
-
|
664 |
-
try:
|
665 |
-
ref_silence_end_p = (ref_silence_end / 44100) * 1000
|
666 |
-
target_silence_end_p = (target_silence_end / 44100) * 1000
|
667 |
-
silence_difference_p = ref_silence_end_p - target_silence_end_p
|
668 |
-
print("silence_difference: ", silence_difference_p)
|
669 |
-
except Exception as e:
|
670 |
-
pass
|
671 |
-
|
672 |
-
if silence_difference > 0: # Add silence to target_audio
|
673 |
-
if len(target_audio.shape) == 2: # stereo
|
674 |
-
silence_to_add = np.zeros((target_audio.shape[0], silence_difference))
|
675 |
-
else: # mono
|
676 |
-
silence_to_add = np.zeros(silence_difference)
|
677 |
-
return np.hstack((silence_to_add, target_audio))
|
678 |
-
elif silence_difference < 0: # Remove silence from target_audio
|
679 |
-
if len(target_audio.shape) == 2: # stereo
|
680 |
-
return target_audio[:, -silence_difference:]
|
681 |
-
else: # mono
|
682 |
-
return target_audio[-silence_difference:]
|
683 |
-
else: # No adjustment needed
|
684 |
-
return target_audio
|
685 |
-
|
686 |
-
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray, is_swap=False):
|
687 |
-
|
688 |
-
if is_swap:
|
689 |
-
array_1, array_2 = array_1.T, array_2.T
|
690 |
-
|
691 |
-
#print("before", array_1.shape, array_2.shape)
|
692 |
-
if array_1.shape[1] > array_2.shape[1]:
|
693 |
-
array_1 = array_1[:,:array_2.shape[1]]
|
694 |
-
elif array_1.shape[1] < array_2.shape[1]:
|
695 |
-
padding = array_2.shape[1] - array_1.shape[1]
|
696 |
-
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
|
697 |
-
|
698 |
-
#print("after", array_1.shape, array_2.shape)
|
699 |
-
|
700 |
-
if is_swap:
|
701 |
-
array_1, array_2 = array_1.T, array_2.T
|
702 |
-
|
703 |
-
return array_1
|
704 |
-
|
705 |
-
def match_mono_array_shapes(array_1: np.ndarray, array_2: np.ndarray):
|
706 |
-
|
707 |
-
if len(array_1) > len(array_2):
|
708 |
-
array_1 = array_1[:len(array_2)]
|
709 |
-
elif len(array_1) < len(array_2):
|
710 |
-
padding = len(array_2) - len(array_1)
|
711 |
-
array_1 = np.pad(array_1, (0, padding), 'constant', constant_values=0)
|
712 |
-
|
713 |
-
return array_1
|
714 |
-
|
715 |
-
def change_pitch_semitones(y, sr, semitone_shift):
|
716 |
-
factor = 2 ** (semitone_shift / 12) # Convert semitone shift to factor for resampling
|
717 |
-
y_pitch_tuned = []
|
718 |
-
for y_channel in y:
|
719 |
-
y_pitch_tuned.append(librosa.resample(y_channel, sr, sr*factor, res_type=wav_resolution_float_resampling))
|
720 |
-
y_pitch_tuned = np.array(y_pitch_tuned)
|
721 |
-
new_sr = sr * factor
|
722 |
-
return y_pitch_tuned, new_sr
|
723 |
-
|
724 |
-
def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False, is_time_correction=True):
|
725 |
-
|
726 |
-
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
|
727 |
-
|
728 |
-
if wav.ndim == 1:
|
729 |
-
wav = np.asfortranarray([wav,wav])
|
730 |
-
|
731 |
-
if not is_time_correction:
|
732 |
-
wav_mix = change_pitch_semitones(wav, 44100, semitone_shift=-rate)[0]
|
733 |
-
else:
|
734 |
-
if is_pitch:
|
735 |
-
wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None)
|
736 |
-
wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None)
|
737 |
-
else:
|
738 |
-
wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None)
|
739 |
-
wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None)
|
740 |
-
|
741 |
-
if wav_1.shape > wav_2.shape:
|
742 |
-
wav_2 = to_shape(wav_2, wav_1.shape)
|
743 |
-
if wav_1.shape < wav_2.shape:
|
744 |
-
wav_1 = to_shape(wav_1, wav_2.shape)
|
745 |
-
|
746 |
-
wav_mix = np.asfortranarray([wav_1, wav_2])
|
747 |
-
|
748 |
-
sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
|
749 |
-
save_format(export_path)
|
750 |
-
|
751 |
-
def average_audio(audio):
|
752 |
-
|
753 |
-
waves = []
|
754 |
-
wave_shapes = []
|
755 |
-
final_waves = []
|
756 |
-
|
757 |
-
for i in range(len(audio)):
|
758 |
-
wave = librosa.load(audio[i], sr=44100, mono=False)
|
759 |
-
waves.append(wave[0])
|
760 |
-
wave_shapes.append(wave[0].shape[1])
|
761 |
-
|
762 |
-
wave_shapes_index = wave_shapes.index(max(wave_shapes))
|
763 |
-
target_shape = waves[wave_shapes_index]
|
764 |
-
waves.pop(wave_shapes_index)
|
765 |
-
final_waves.append(target_shape)
|
766 |
-
|
767 |
-
for n_array in waves:
|
768 |
-
wav_target = to_shape(n_array, target_shape.shape)
|
769 |
-
final_waves.append(wav_target)
|
770 |
-
|
771 |
-
waves = sum(final_waves)
|
772 |
-
waves = waves/len(audio)
|
773 |
-
|
774 |
-
return waves
|
775 |
-
|
776 |
-
def average_dual_sources(wav_1, wav_2, value):
|
777 |
-
|
778 |
-
if wav_1.shape > wav_2.shape:
|
779 |
-
wav_2 = to_shape(wav_2, wav_1.shape)
|
780 |
-
if wav_1.shape < wav_2.shape:
|
781 |
-
wav_1 = to_shape(wav_1, wav_2.shape)
|
782 |
-
|
783 |
-
wave = (wav_1 * value) + (wav_2 * (1-value))
|
784 |
-
|
785 |
-
return wave
|
786 |
-
|
787 |
-
def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
|
788 |
-
|
789 |
-
if wav_1.shape > wav_2.shape:
|
790 |
-
wav_2 = to_shape(wav_2, wav_1.shape)
|
791 |
-
if wav_1.shape < wav_2.shape:
|
792 |
-
ln = min([wav_1.shape[1], wav_2.shape[1]])
|
793 |
-
wav_2 = wav_2[:,:ln]
|
794 |
-
|
795 |
-
ln = min([wav_1.shape[1], wav_2.shape[1]])
|
796 |
-
wav_1 = wav_1[:,:ln]
|
797 |
-
wav_2 = wav_2[:,:ln]
|
798 |
-
|
799 |
-
return wav_2
|
800 |
-
|
801 |
-
def reshape_sources_ref(wav_1_shape, wav_2: np.ndarray):
|
802 |
-
|
803 |
-
if wav_1_shape > wav_2.shape:
|
804 |
-
wav_2 = to_shape(wav_2, wav_1_shape)
|
805 |
-
|
806 |
-
return wav_2
|
807 |
-
|
808 |
-
def combine_arrarys(audio_sources, is_swap=False):
|
809 |
-
source = np.zeros_like(max(audio_sources, key=np.size))
|
810 |
-
|
811 |
-
for v in audio_sources:
|
812 |
-
v = match_array_shapes(v, source, is_swap=is_swap)
|
813 |
-
source += v
|
814 |
-
|
815 |
-
return source
|
816 |
-
|
817 |
-
def combine_audio(paths: list, audio_file_base=None, wav_type_set='FLOAT', save_format=None):
|
818 |
-
|
819 |
-
source = combine_arrarys([load_audio(i) for i in paths])
|
820 |
-
save_path = f"{audio_file_base}_combined.wav"
|
821 |
-
sf.write(save_path, source.T, 44100, subtype=wav_type_set)
|
822 |
-
save_format(save_path)
|
823 |
-
|
824 |
-
def reduce_mix_bv(inst_source, voc_source, reduction_rate=0.9):
|
825 |
-
# Reduce the volume
|
826 |
-
inst_source = inst_source * (1 - reduction_rate)
|
827 |
-
|
828 |
-
mix_reduced = combine_arrarys([inst_source, voc_source], is_swap=True)
|
829 |
-
|
830 |
-
return mix_reduced
|
831 |
-
|
832 |
-
def organize_inputs(inputs):
|
833 |
-
input_list = {
|
834 |
-
"target":None,
|
835 |
-
"reference":None,
|
836 |
-
"reverb":None,
|
837 |
-
"inst":None
|
838 |
-
}
|
839 |
-
|
840 |
-
for i in inputs:
|
841 |
-
if i.endswith("_(Vocals).wav"):
|
842 |
-
input_list["reference"] = i
|
843 |
-
elif "_RVC_" in i:
|
844 |
-
input_list["target"] = i
|
845 |
-
elif i.endswith("reverbed_stem.wav"):
|
846 |
-
input_list["reverb"] = i
|
847 |
-
elif i.endswith("_(Instrumental).wav"):
|
848 |
-
input_list["inst"] = i
|
849 |
-
|
850 |
-
return input_list
|
851 |
-
|
852 |
-
def check_if_phase_inverted(wav1, wav2, is_mono=False):
|
853 |
-
# Load the audio files
|
854 |
-
if not is_mono:
|
855 |
-
wav1 = np.mean(wav1, axis=0)
|
856 |
-
wav2 = np.mean(wav2, axis=0)
|
857 |
-
|
858 |
-
# Compute the correlation
|
859 |
-
correlation = np.corrcoef(wav1[:1000], wav2[:1000])
|
860 |
-
|
861 |
-
return correlation[0,1] < 0
|
862 |
-
|
863 |
-
def align_audio(file1,
|
864 |
-
file2,
|
865 |
-
file2_aligned,
|
866 |
-
file_subtracted,
|
867 |
-
wav_type_set,
|
868 |
-
is_save_aligned,
|
869 |
-
command_Text,
|
870 |
-
save_format,
|
871 |
-
align_window:list,
|
872 |
-
align_intro_val:list,
|
873 |
-
db_analysis:tuple,
|
874 |
-
set_progress_bar,
|
875 |
-
phase_option,
|
876 |
-
phase_shifts,
|
877 |
-
is_match_silence,
|
878 |
-
is_spec_match):
|
879 |
-
|
880 |
-
global progress_value
|
881 |
-
progress_value = 0
|
882 |
-
is_mono = False
|
883 |
-
|
884 |
-
def get_diff(a, b):
|
885 |
-
corr = np.correlate(a, b, "full")
|
886 |
-
diff = corr.argmax() - (b.shape[0] - 1)
|
887 |
-
|
888 |
-
return diff
|
889 |
-
|
890 |
-
def progress_bar(length):
|
891 |
-
global progress_value
|
892 |
-
progress_value += 1
|
893 |
-
|
894 |
-
if (0.90/length*progress_value) >= 0.9:
|
895 |
-
length = progress_value + 1
|
896 |
-
|
897 |
-
set_progress_bar(0.1, (0.9/length*progress_value))
|
898 |
-
|
899 |
-
# read tracks
|
900 |
-
|
901 |
-
if file1.endswith(".mp3") and is_macos:
|
902 |
-
length1 = rerun_mp3(file1)
|
903 |
-
wav1, sr1 = librosa.load(file1, duration=length1, sr=44100, mono=False)
|
904 |
-
else:
|
905 |
-
wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
|
906 |
-
|
907 |
-
if file2.endswith(".mp3") and is_macos:
|
908 |
-
length2 = rerun_mp3(file2)
|
909 |
-
wav2, sr2 = librosa.load(file2, duration=length2, sr=44100, mono=False)
|
910 |
-
else:
|
911 |
-
wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
|
912 |
-
|
913 |
-
if wav1.ndim == 1 and wav2.ndim == 1:
|
914 |
-
is_mono = True
|
915 |
-
elif wav1.ndim == 1:
|
916 |
-
wav1 = np.asfortranarray([wav1,wav1])
|
917 |
-
elif wav2.ndim == 1:
|
918 |
-
wav2 = np.asfortranarray([wav2,wav2])
|
919 |
-
|
920 |
-
# Check if phase is inverted
|
921 |
-
if phase_option == AUTO_PHASE:
|
922 |
-
if check_if_phase_inverted(wav1, wav2, is_mono=is_mono):
|
923 |
-
wav2 = -wav2
|
924 |
-
elif phase_option == POSITIVE_PHASE:
|
925 |
-
wav2 = +wav2
|
926 |
-
elif phase_option == NEGATIVE_PHASE:
|
927 |
-
wav2 = -wav2
|
928 |
-
|
929 |
-
if is_match_silence:
|
930 |
-
wav2 = adjust_leading_silence(wav2, wav1)
|
931 |
-
|
932 |
-
wav1_length = int(librosa.get_duration(y=wav1, sr=44100))
|
933 |
-
wav2_length = int(librosa.get_duration(y=wav2, sr=44100))
|
934 |
-
|
935 |
-
if not is_mono:
|
936 |
-
wav1 = wav1.transpose()
|
937 |
-
wav2 = wav2.transpose()
|
938 |
-
|
939 |
-
wav2_org = wav2.copy()
|
940 |
-
|
941 |
-
command_Text("Processing files... \n")
|
942 |
-
seconds_length = min(wav1_length, wav2_length)
|
943 |
-
|
944 |
-
wav2_aligned_sources = []
|
945 |
-
|
946 |
-
for sec_len in align_intro_val:
|
947 |
-
# pick a position at 1 second in and get diff
|
948 |
-
sec_seg = 1 if sec_len == 1 else int(seconds_length // sec_len)
|
949 |
-
index = sr1*sec_seg # 1 second in, assuming sr1 = sr2 = 44100
|
950 |
-
|
951 |
-
if is_mono:
|
952 |
-
samp1, samp2 = wav1[index : index + sr1], wav2[index : index + sr1]
|
953 |
-
diff = get_diff(samp1, samp2)
|
954 |
-
#print(f"Estimated difference: {diff}\n")
|
955 |
-
else:
|
956 |
-
index = sr1*sec_seg # 1 second in, assuming sr1 = sr2 = 44100
|
957 |
-
samp1, samp2 = wav1[index : index + sr1, 0], wav2[index : index + sr1, 0]
|
958 |
-
samp1_r, samp2_r = wav1[index : index + sr1, 1], wav2[index : index + sr1, 1]
|
959 |
-
diff, diff_r = get_diff(samp1, samp2), get_diff(samp1_r, samp2_r)
|
960 |
-
#print(f"Estimated difference Left Channel: {diff}\nEstimated difference Right Channel: {diff_r}\n")
|
961 |
-
|
962 |
-
# make aligned track 2
|
963 |
-
if diff > 0:
|
964 |
-
zeros_to_append = np.zeros(diff) if is_mono else np.zeros((diff, 2))
|
965 |
-
wav2_aligned = np.append(zeros_to_append, wav2_org, axis=0)
|
966 |
-
elif diff < 0:
|
967 |
-
wav2_aligned = wav2_org[-diff:]
|
968 |
-
else:
|
969 |
-
wav2_aligned = wav2_org
|
970 |
-
#command_Text(f"Audio files already aligned.\n")
|
971 |
-
|
972 |
-
if not any(np.array_equal(wav2_aligned, source) for source in wav2_aligned_sources):
|
973 |
-
wav2_aligned_sources.append(wav2_aligned)
|
974 |
-
|
975 |
-
#print("Unique Sources: ", len(wav2_aligned_sources))
|
976 |
-
|
977 |
-
unique_sources = len(wav2_aligned_sources)
|
978 |
-
|
979 |
-
sub_mapper_big_mapper = {}
|
980 |
-
|
981 |
-
for s in wav2_aligned_sources:
|
982 |
-
wav2_aligned = match_mono_array_shapes(s, wav1) if is_mono else match_array_shapes(s, wav1, is_swap=True)
|
983 |
-
|
984 |
-
if align_window:
|
985 |
-
wav_sub = time_correction(wav1, wav2_aligned, seconds_length, align_window=align_window, db_analysis=db_analysis, progress_bar=progress_bar, unique_sources=unique_sources, phase_shifts=phase_shifts)
|
986 |
-
wav_sub_size = np.abs(wav_sub).mean()
|
987 |
-
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
|
988 |
-
else:
|
989 |
-
wav2_aligned = wav2_aligned * np.power(10, db_analysis[0] / 20)
|
990 |
-
db_range = db_analysis[1]
|
991 |
-
|
992 |
-
for db_adjustment in db_range:
|
993 |
-
# Adjust the dB of track2
|
994 |
-
s_adjusted = wav2_aligned * (10 ** (db_adjustment / 20))
|
995 |
-
wav_sub = wav1 - s_adjusted
|
996 |
-
wav_sub_size = np.abs(wav_sub).mean()
|
997 |
-
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
|
998 |
-
|
999 |
-
#print(sub_mapper_big_mapper.keys(), min(sub_mapper_big_mapper.keys()))
|
1000 |
-
|
1001 |
-
sub_mapper_value_list = list(sub_mapper_big_mapper.values())
|
1002 |
-
|
1003 |
-
if is_spec_match and len(sub_mapper_value_list) >= 2:
|
1004 |
-
#print("using spec ensemble with align")
|
1005 |
-
wav_sub = ensemble_for_align(list(sub_mapper_big_mapper.values()))
|
1006 |
-
else:
|
1007 |
-
#print("using linear ensemble with align")
|
1008 |
-
wav_sub = ensemble_wav(list(sub_mapper_big_mapper.values()))
|
1009 |
-
|
1010 |
-
#print(f"Mix Mean: {np.abs(wav1).mean()}\nInst Mean: {np.abs(wav2).mean()}")
|
1011 |
-
#print('Final: ', np.abs(wav_sub).mean())
|
1012 |
-
wav_sub = np.clip(wav_sub, -1, +1)
|
1013 |
-
|
1014 |
-
command_Text(f"Saving inverted track... ")
|
1015 |
-
|
1016 |
-
if is_save_aligned or is_spec_match:
|
1017 |
-
wav1 = match_mono_array_shapes(wav1, wav_sub) if is_mono else match_array_shapes(wav1, wav_sub, is_swap=True)
|
1018 |
-
wav2_aligned = wav1 - wav_sub
|
1019 |
-
|
1020 |
-
if is_spec_match:
|
1021 |
-
if wav1.ndim == 1 and wav2.ndim == 1:
|
1022 |
-
wav2_aligned = np.asfortranarray([wav2_aligned, wav2_aligned]).T
|
1023 |
-
wav1 = np.asfortranarray([wav1, wav1]).T
|
1024 |
-
|
1025 |
-
wav2_aligned = ensemble_for_align([wav2_aligned, wav1])
|
1026 |
-
wav_sub = wav1 - wav2_aligned
|
1027 |
-
|
1028 |
-
if is_save_aligned:
|
1029 |
-
sf.write(file2_aligned, wav2_aligned, sr1, subtype=wav_type_set)
|
1030 |
-
save_format(file2_aligned)
|
1031 |
-
|
1032 |
-
sf.write(file_subtracted, wav_sub, sr1, subtype=wav_type_set)
|
1033 |
-
save_format(file_subtracted)
|
1034 |
-
|
1035 |
-
def phase_shift_hilbert(signal, degree):
|
1036 |
-
analytic_signal = hilbert(signal)
|
1037 |
-
return np.cos(np.radians(degree)) * analytic_signal.real - np.sin(np.radians(degree)) * analytic_signal.imag
|
1038 |
-
|
1039 |
-
def get_phase_shifted_tracks(track, phase_shift):
|
1040 |
-
if phase_shift == 180:
|
1041 |
-
return [track, -track]
|
1042 |
-
|
1043 |
-
step = phase_shift
|
1044 |
-
end = 180 - (180 % step) if 180 % step == 0 else 181
|
1045 |
-
phase_range = range(step, end, step)
|
1046 |
-
|
1047 |
-
flipped_list = [track, -track]
|
1048 |
-
for i in phase_range:
|
1049 |
-
flipped_list.extend([phase_shift_hilbert(track, i), phase_shift_hilbert(track, -i)])
|
1050 |
-
|
1051 |
-
return flipped_list
|
1052 |
-
|
1053 |
-
def time_correction(mix:np.ndarray, instrumental:np.ndarray, seconds_length, align_window, db_analysis, sr=44100, progress_bar=None, unique_sources=None, phase_shifts=NONE_P):
|
1054 |
-
# Function to align two tracks using cross-correlation
|
1055 |
-
|
1056 |
-
def align_tracks(track1, track2):
|
1057 |
-
# A dictionary to store each version of track2_shifted and its mean absolute value
|
1058 |
-
shifted_tracks = {}
|
1059 |
-
|
1060 |
-
# Loop to adjust dB of track2
|
1061 |
-
track2 = track2 * np.power(10, db_analysis[0] / 20)
|
1062 |
-
db_range = db_analysis[1]
|
1063 |
-
|
1064 |
-
if phase_shifts == 190:
|
1065 |
-
track2_flipped = [track2]
|
1066 |
-
else:
|
1067 |
-
track2_flipped = get_phase_shifted_tracks(track2, phase_shifts)
|
1068 |
-
|
1069 |
-
for db_adjustment in db_range:
|
1070 |
-
for t in track2_flipped:
|
1071 |
-
# Adjust the dB of track2
|
1072 |
-
track2_adjusted = t * (10 ** (db_adjustment / 20))
|
1073 |
-
corr = correlate(track1, track2_adjusted)
|
1074 |
-
delay = np.argmax(np.abs(corr)) - (len(track1) - 1)
|
1075 |
-
track2_shifted = np.roll(track2_adjusted, shift=delay)
|
1076 |
-
|
1077 |
-
# Compute the mean absolute value of track2_shifted
|
1078 |
-
track2_shifted_sub = track1 - track2_shifted
|
1079 |
-
mean_abs_value = np.abs(track2_shifted_sub).mean()
|
1080 |
-
|
1081 |
-
# Store track2_shifted and its mean absolute value in the dictionary
|
1082 |
-
shifted_tracks[mean_abs_value] = track2_shifted
|
1083 |
-
|
1084 |
-
# Return the version of track2_shifted with the smallest mean absolute value
|
1085 |
-
|
1086 |
-
return shifted_tracks[min(shifted_tracks.keys())]
|
1087 |
-
|
1088 |
-
# Make sure the audio files have the same shape
|
1089 |
-
|
1090 |
-
assert mix.shape == instrumental.shape, f"Audio files must have the same shape - Mix: {mix.shape}, Inst: {instrumental.shape}"
|
1091 |
-
|
1092 |
-
seconds_length = seconds_length // 2
|
1093 |
-
|
1094 |
-
sub_mapper = {}
|
1095 |
-
|
1096 |
-
progress_update_interval = 120
|
1097 |
-
total_iterations = 0
|
1098 |
-
|
1099 |
-
if len(align_window) > 2:
|
1100 |
-
progress_update_interval = 320
|
1101 |
-
|
1102 |
-
for secs in align_window:
|
1103 |
-
step = secs / 2
|
1104 |
-
window_size = int(sr * secs)
|
1105 |
-
step_size = int(sr * step)
|
1106 |
-
|
1107 |
-
if len(mix.shape) == 1:
|
1108 |
-
total_mono = (len(range(0, len(mix) - window_size, step_size))//progress_update_interval)*unique_sources
|
1109 |
-
total_iterations += total_mono
|
1110 |
-
else:
|
1111 |
-
total_stereo_ = len(range(0, len(mix[:, 0]) - window_size, step_size))*2
|
1112 |
-
total_stereo = (total_stereo_//progress_update_interval) * unique_sources
|
1113 |
-
total_iterations += total_stereo
|
1114 |
-
|
1115 |
-
#print(total_iterations)
|
1116 |
-
|
1117 |
-
for secs in align_window:
|
1118 |
-
sub = np.zeros_like(mix)
|
1119 |
-
divider = np.zeros_like(mix)
|
1120 |
-
step = secs / 2
|
1121 |
-
window_size = int(sr * secs)
|
1122 |
-
step_size = int(sr * step)
|
1123 |
-
window = np.hanning(window_size)
|
1124 |
-
|
1125 |
-
# For the mono case:
|
1126 |
-
if len(mix.shape) == 1:
|
1127 |
-
# The files are mono
|
1128 |
-
counter = 0
|
1129 |
-
for i in range(0, len(mix) - window_size, step_size):
|
1130 |
-
counter += 1
|
1131 |
-
if counter % progress_update_interval == 0:
|
1132 |
-
progress_bar(total_iterations)
|
1133 |
-
window_mix = mix[i:i+window_size] * window
|
1134 |
-
window_instrumental = instrumental[i:i+window_size] * window
|
1135 |
-
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
|
1136 |
-
sub[i:i+window_size] += window_mix - window_instrumental_aligned
|
1137 |
-
divider[i:i+window_size] += window
|
1138 |
-
else:
|
1139 |
-
# The files are stereo
|
1140 |
-
counter = 0
|
1141 |
-
for ch in range(mix.shape[1]):
|
1142 |
-
for i in range(0, len(mix[:, ch]) - window_size, step_size):
|
1143 |
-
counter += 1
|
1144 |
-
if counter % progress_update_interval == 0:
|
1145 |
-
progress_bar(total_iterations)
|
1146 |
-
window_mix = mix[i:i+window_size, ch] * window
|
1147 |
-
window_instrumental = instrumental[i:i+window_size, ch] * window
|
1148 |
-
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
|
1149 |
-
sub[i:i+window_size, ch] += window_mix - window_instrumental_aligned
|
1150 |
-
divider[i:i+window_size, ch] += window
|
1151 |
-
|
1152 |
-
# Normalize the result by the overlap count
|
1153 |
-
sub = np.where(divider > 1e-6, sub / divider, sub)
|
1154 |
-
sub_size = np.abs(sub).mean()
|
1155 |
-
sub_mapper = {**sub_mapper, **{sub_size: sub}}
|
1156 |
-
|
1157 |
-
#print("SUB_LEN", len(list(sub_mapper.values())))
|
1158 |
-
|
1159 |
-
sub = ensemble_wav(list(sub_mapper.values()), split_size=12)
|
1160 |
-
|
1161 |
-
return sub
|
1162 |
-
|
1163 |
-
def ensemble_wav(waveforms, split_size=240):
|
1164 |
-
# Create a dictionary to hold the thirds of each waveform and their mean absolute values
|
1165 |
-
waveform_thirds = {i: np.array_split(waveform, split_size) for i, waveform in enumerate(waveforms)}
|
1166 |
-
|
1167 |
-
# Initialize the final waveform
|
1168 |
-
final_waveform = []
|
1169 |
-
|
1170 |
-
# For chunk
|
1171 |
-
for third_idx in range(split_size):
|
1172 |
-
# Compute the mean absolute value of each third from each waveform
|
1173 |
-
means = [np.abs(waveform_thirds[i][third_idx]).mean() for i in range(len(waveforms))]
|
1174 |
-
|
1175 |
-
# Find the index of the waveform with the lowest mean absolute value for this third
|
1176 |
-
min_index = np.argmin(means)
|
1177 |
-
|
1178 |
-
# Add the least noisy third to the final waveform
|
1179 |
-
final_waveform.append(waveform_thirds[min_index][third_idx])
|
1180 |
-
|
1181 |
-
# Concatenate all the thirds to create the final waveform
|
1182 |
-
final_waveform = np.concatenate(final_waveform)
|
1183 |
-
|
1184 |
-
return final_waveform
|
1185 |
-
|
1186 |
-
def ensemble_wav_min(waveforms):
|
1187 |
-
for i in range(1, len(waveforms)):
|
1188 |
-
if i == 1:
|
1189 |
-
wave = waveforms[0]
|
1190 |
-
|
1191 |
-
ln = min(len(wave), len(waveforms[i]))
|
1192 |
-
wave = wave[:ln]
|
1193 |
-
waveforms[i] = waveforms[i][:ln]
|
1194 |
-
|
1195 |
-
wave = np.where(np.abs(waveforms[i]) <= np.abs(wave), waveforms[i], wave)
|
1196 |
-
|
1197 |
-
return wave
|
1198 |
-
|
1199 |
-
def align_audio_test(wav1, wav2, sr1=44100):
|
1200 |
-
def get_diff(a, b):
|
1201 |
-
corr = np.correlate(a, b, "full")
|
1202 |
-
diff = corr.argmax() - (b.shape[0] - 1)
|
1203 |
-
return diff
|
1204 |
-
|
1205 |
-
# read tracks
|
1206 |
-
wav1 = wav1.transpose()
|
1207 |
-
wav2 = wav2.transpose()
|
1208 |
-
|
1209 |
-
#print(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n")
|
1210 |
-
|
1211 |
-
wav2_org = wav2.copy()
|
1212 |
-
|
1213 |
-
# pick a position at 1 second in and get diff
|
1214 |
-
index = sr1#*seconds_length # 1 second in, assuming sr1 = sr2 = 44100
|
1215 |
-
samp1 = wav1[index : index + sr1, 0] # currently use left channel
|
1216 |
-
samp2 = wav2[index : index + sr1, 0]
|
1217 |
-
diff = get_diff(samp1, samp2)
|
1218 |
-
|
1219 |
-
# make aligned track 2
|
1220 |
-
if diff > 0:
|
1221 |
-
wav2_aligned = np.append(np.zeros((diff, 1)), wav2_org, axis=0)
|
1222 |
-
elif diff < 0:
|
1223 |
-
wav2_aligned = wav2_org[-diff:]
|
1224 |
-
else:
|
1225 |
-
wav2_aligned = wav2_org
|
1226 |
-
|
1227 |
-
return wav2_aligned
|
1228 |
-
|
1229 |
-
def load_audio(audio_file):
|
1230 |
-
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
|
1231 |
-
|
1232 |
-
if wav.ndim == 1:
|
1233 |
-
wav = np.asfortranarray([wav,wav])
|
1234 |
-
|
1235 |
-
return wav
|
1236 |
-
|
1237 |
-
def rerun_mp3(audio_file):
|
1238 |
-
with audioread.audio_open(audio_file) as f:
|
1239 |
-
track_length = int(f.duration)
|
1240 |
-
|
1241 |
-
return track_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/tfc_tdf_v3.py
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from functools import partial
|
4 |
-
|
5 |
-
class STFT:
|
6 |
-
def __init__(self, n_fft, hop_length, dim_f, device):
|
7 |
-
self.n_fft = n_fft
|
8 |
-
self.hop_length = hop_length
|
9 |
-
self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
|
10 |
-
self.dim_f = dim_f
|
11 |
-
self.device = device
|
12 |
-
|
13 |
-
def __call__(self, x):
|
14 |
-
|
15 |
-
x_is_mps = not x.device.type in ["cuda", "cpu"]
|
16 |
-
if x_is_mps:
|
17 |
-
x = x.cpu()
|
18 |
-
|
19 |
-
window = self.window.to(x.device)
|
20 |
-
batch_dims = x.shape[:-2]
|
21 |
-
c, t = x.shape[-2:]
|
22 |
-
x = x.reshape([-1, t])
|
23 |
-
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True,return_complex=False)
|
24 |
-
x = x.permute([0, 3, 1, 2])
|
25 |
-
x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]])
|
26 |
-
|
27 |
-
if x_is_mps:
|
28 |
-
x = x.to(self.device)
|
29 |
-
|
30 |
-
return x[..., :self.dim_f, :]
|
31 |
-
|
32 |
-
def inverse(self, x):
|
33 |
-
|
34 |
-
x_is_mps = not x.device.type in ["cuda", "cpu"]
|
35 |
-
if x_is_mps:
|
36 |
-
x = x.cpu()
|
37 |
-
|
38 |
-
window = self.window.to(x.device)
|
39 |
-
batch_dims = x.shape[:-3]
|
40 |
-
c, f, t = x.shape[-3:]
|
41 |
-
n = self.n_fft // 2 + 1
|
42 |
-
f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device)
|
43 |
-
x = torch.cat([x, f_pad], -2)
|
44 |
-
x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t])
|
45 |
-
x = x.permute([0, 2, 3, 1])
|
46 |
-
x = x[..., 0] + x[..., 1] * 1.j
|
47 |
-
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True)
|
48 |
-
x = x.reshape([*batch_dims, 2, -1])
|
49 |
-
|
50 |
-
if x_is_mps:
|
51 |
-
x = x.to(self.device)
|
52 |
-
|
53 |
-
return x
|
54 |
-
|
55 |
-
def get_norm(norm_type):
|
56 |
-
def norm(c, norm_type):
|
57 |
-
if norm_type == 'BatchNorm':
|
58 |
-
return nn.BatchNorm2d(c)
|
59 |
-
elif norm_type == 'InstanceNorm':
|
60 |
-
return nn.InstanceNorm2d(c, affine=True)
|
61 |
-
elif 'GroupNorm' in norm_type:
|
62 |
-
g = int(norm_type.replace('GroupNorm', ''))
|
63 |
-
return nn.GroupNorm(num_groups=g, num_channels=c)
|
64 |
-
else:
|
65 |
-
return nn.Identity()
|
66 |
-
|
67 |
-
return partial(norm, norm_type=norm_type)
|
68 |
-
|
69 |
-
|
70 |
-
def get_act(act_type):
|
71 |
-
if act_type == 'gelu':
|
72 |
-
return nn.GELU()
|
73 |
-
elif act_type == 'relu':
|
74 |
-
return nn.ReLU()
|
75 |
-
elif act_type[:3] == 'elu':
|
76 |
-
alpha = float(act_type.replace('elu', ''))
|
77 |
-
return nn.ELU(alpha)
|
78 |
-
else:
|
79 |
-
raise Exception
|
80 |
-
|
81 |
-
|
82 |
-
class Upscale(nn.Module):
|
83 |
-
def __init__(self, in_c, out_c, scale, norm, act):
|
84 |
-
super().__init__()
|
85 |
-
self.conv = nn.Sequential(
|
86 |
-
norm(in_c),
|
87 |
-
act,
|
88 |
-
nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False)
|
89 |
-
)
|
90 |
-
|
91 |
-
def forward(self, x):
|
92 |
-
return self.conv(x)
|
93 |
-
|
94 |
-
|
95 |
-
class Downscale(nn.Module):
|
96 |
-
def __init__(self, in_c, out_c, scale, norm, act):
|
97 |
-
super().__init__()
|
98 |
-
self.conv = nn.Sequential(
|
99 |
-
norm(in_c),
|
100 |
-
act,
|
101 |
-
nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False)
|
102 |
-
)
|
103 |
-
|
104 |
-
def forward(self, x):
|
105 |
-
return self.conv(x)
|
106 |
-
|
107 |
-
|
108 |
-
class TFC_TDF(nn.Module):
|
109 |
-
def __init__(self, in_c, c, l, f, bn, norm, act):
|
110 |
-
super().__init__()
|
111 |
-
|
112 |
-
self.blocks = nn.ModuleList()
|
113 |
-
for i in range(l):
|
114 |
-
block = nn.Module()
|
115 |
-
|
116 |
-
block.tfc1 = nn.Sequential(
|
117 |
-
norm(in_c),
|
118 |
-
act,
|
119 |
-
nn.Conv2d(in_c, c, 3, 1, 1, bias=False),
|
120 |
-
)
|
121 |
-
block.tdf = nn.Sequential(
|
122 |
-
norm(c),
|
123 |
-
act,
|
124 |
-
nn.Linear(f, f // bn, bias=False),
|
125 |
-
norm(c),
|
126 |
-
act,
|
127 |
-
nn.Linear(f // bn, f, bias=False),
|
128 |
-
)
|
129 |
-
block.tfc2 = nn.Sequential(
|
130 |
-
norm(c),
|
131 |
-
act,
|
132 |
-
nn.Conv2d(c, c, 3, 1, 1, bias=False),
|
133 |
-
)
|
134 |
-
block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False)
|
135 |
-
|
136 |
-
self.blocks.append(block)
|
137 |
-
in_c = c
|
138 |
-
|
139 |
-
def forward(self, x):
|
140 |
-
for block in self.blocks:
|
141 |
-
s = block.shortcut(x)
|
142 |
-
x = block.tfc1(x)
|
143 |
-
x = x + block.tdf(x)
|
144 |
-
x = block.tfc2(x)
|
145 |
-
x = x + s
|
146 |
-
return x
|
147 |
-
|
148 |
-
|
149 |
-
class TFC_TDF_net(nn.Module):
|
150 |
-
def __init__(self, config, device):
|
151 |
-
super().__init__()
|
152 |
-
self.config = config
|
153 |
-
self.device = device
|
154 |
-
|
155 |
-
norm = get_norm(norm_type=config.model.norm)
|
156 |
-
act = get_act(act_type=config.model.act)
|
157 |
-
|
158 |
-
self.num_target_instruments = 1 if config.training.target_instrument else len(config.training.instruments)
|
159 |
-
self.num_subbands = config.model.num_subbands
|
160 |
-
|
161 |
-
dim_c = self.num_subbands * config.audio.num_channels * 2
|
162 |
-
n = config.model.num_scales
|
163 |
-
scale = config.model.scale
|
164 |
-
l = config.model.num_blocks_per_scale
|
165 |
-
c = config.model.num_channels
|
166 |
-
g = config.model.growth
|
167 |
-
bn = config.model.bottleneck_factor
|
168 |
-
f = config.audio.dim_f // self.num_subbands
|
169 |
-
|
170 |
-
self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False)
|
171 |
-
|
172 |
-
self.encoder_blocks = nn.ModuleList()
|
173 |
-
for i in range(n):
|
174 |
-
block = nn.Module()
|
175 |
-
block.tfc_tdf = TFC_TDF(c, c, l, f, bn, norm, act)
|
176 |
-
block.downscale = Downscale(c, c + g, scale, norm, act)
|
177 |
-
f = f // scale[1]
|
178 |
-
c += g
|
179 |
-
self.encoder_blocks.append(block)
|
180 |
-
|
181 |
-
self.bottleneck_block = TFC_TDF(c, c, l, f, bn, norm, act)
|
182 |
-
|
183 |
-
self.decoder_blocks = nn.ModuleList()
|
184 |
-
for i in range(n):
|
185 |
-
block = nn.Module()
|
186 |
-
block.upscale = Upscale(c, c - g, scale, norm, act)
|
187 |
-
f = f * scale[1]
|
188 |
-
c -= g
|
189 |
-
block.tfc_tdf = TFC_TDF(2 * c, c, l, f, bn, norm, act)
|
190 |
-
self.decoder_blocks.append(block)
|
191 |
-
|
192 |
-
self.final_conv = nn.Sequential(
|
193 |
-
nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False),
|
194 |
-
act,
|
195 |
-
nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False)
|
196 |
-
)
|
197 |
-
|
198 |
-
self.stft = STFT(config.audio.n_fft, config.audio.hop_length, config.audio.dim_f, self.device)
|
199 |
-
|
200 |
-
def cac2cws(self, x):
|
201 |
-
k = self.num_subbands
|
202 |
-
b, c, f, t = x.shape
|
203 |
-
x = x.reshape(b, c, k, f // k, t)
|
204 |
-
x = x.reshape(b, c * k, f // k, t)
|
205 |
-
return x
|
206 |
-
|
207 |
-
def cws2cac(self, x):
|
208 |
-
k = self.num_subbands
|
209 |
-
b, c, f, t = x.shape
|
210 |
-
x = x.reshape(b, c // k, k, f, t)
|
211 |
-
x = x.reshape(b, c // k, f * k, t)
|
212 |
-
return x
|
213 |
-
|
214 |
-
def forward(self, x):
|
215 |
-
|
216 |
-
x = self.stft(x)
|
217 |
-
|
218 |
-
mix = x = self.cac2cws(x)
|
219 |
-
|
220 |
-
first_conv_out = x = self.first_conv(x)
|
221 |
-
|
222 |
-
x = x.transpose(-1, -2)
|
223 |
-
|
224 |
-
encoder_outputs = []
|
225 |
-
for block in self.encoder_blocks:
|
226 |
-
x = block.tfc_tdf(x)
|
227 |
-
encoder_outputs.append(x)
|
228 |
-
x = block.downscale(x)
|
229 |
-
|
230 |
-
x = self.bottleneck_block(x)
|
231 |
-
|
232 |
-
for block in self.decoder_blocks:
|
233 |
-
x = block.upscale(x)
|
234 |
-
x = torch.cat([x, encoder_outputs.pop()], 1)
|
235 |
-
x = block.tfc_tdf(x)
|
236 |
-
|
237 |
-
x = x.transpose(-1, -2)
|
238 |
-
|
239 |
-
x = x * first_conv_out # reduce artifacts
|
240 |
-
|
241 |
-
x = self.final_conv(torch.cat([mix, x], 1))
|
242 |
-
|
243 |
-
x = self.cws2cac(x)
|
244 |
-
|
245 |
-
if self.num_target_instruments > 1:
|
246 |
-
b, c, f, t = x.shape
|
247 |
-
x = x.reshape(b, self.num_target_instruments, -1, f, t)
|
248 |
-
|
249 |
-
x = self.stft.inverse(x)
|
250 |
-
|
251 |
-
return x
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
# VR init.
|
|
|
|
lib_v5/vr_network/layers.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from lib_v5 import spec_utils
|
6 |
-
|
7 |
-
class Conv2DBNActiv(nn.Module):
|
8 |
-
|
9 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
-
super(Conv2DBNActiv, self).__init__()
|
11 |
-
self.conv = nn.Sequential(
|
12 |
-
nn.Conv2d(
|
13 |
-
nin, nout,
|
14 |
-
kernel_size=ksize,
|
15 |
-
stride=stride,
|
16 |
-
padding=pad,
|
17 |
-
dilation=dilation,
|
18 |
-
bias=False),
|
19 |
-
nn.BatchNorm2d(nout),
|
20 |
-
activ()
|
21 |
-
)
|
22 |
-
|
23 |
-
def __call__(self, x):
|
24 |
-
return self.conv(x)
|
25 |
-
|
26 |
-
class SeperableConv2DBNActiv(nn.Module):
|
27 |
-
|
28 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
29 |
-
super(SeperableConv2DBNActiv, self).__init__()
|
30 |
-
self.conv = nn.Sequential(
|
31 |
-
nn.Conv2d(
|
32 |
-
nin, nin,
|
33 |
-
kernel_size=ksize,
|
34 |
-
stride=stride,
|
35 |
-
padding=pad,
|
36 |
-
dilation=dilation,
|
37 |
-
groups=nin,
|
38 |
-
bias=False),
|
39 |
-
nn.Conv2d(
|
40 |
-
nin, nout,
|
41 |
-
kernel_size=1,
|
42 |
-
bias=False),
|
43 |
-
nn.BatchNorm2d(nout),
|
44 |
-
activ()
|
45 |
-
)
|
46 |
-
|
47 |
-
def __call__(self, x):
|
48 |
-
return self.conv(x)
|
49 |
-
|
50 |
-
|
51 |
-
class Encoder(nn.Module):
|
52 |
-
|
53 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
54 |
-
super(Encoder, self).__init__()
|
55 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
56 |
-
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
57 |
-
|
58 |
-
def __call__(self, x):
|
59 |
-
skip = self.conv1(x)
|
60 |
-
h = self.conv2(skip)
|
61 |
-
|
62 |
-
return h, skip
|
63 |
-
|
64 |
-
|
65 |
-
class Decoder(nn.Module):
|
66 |
-
|
67 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
68 |
-
super(Decoder, self).__init__()
|
69 |
-
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
70 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
71 |
-
|
72 |
-
def __call__(self, x, skip=None):
|
73 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
74 |
-
if skip is not None:
|
75 |
-
skip = spec_utils.crop_center(skip, x)
|
76 |
-
x = torch.cat([x, skip], dim=1)
|
77 |
-
h = self.conv(x)
|
78 |
-
|
79 |
-
if self.dropout is not None:
|
80 |
-
h = self.dropout(h)
|
81 |
-
|
82 |
-
return h
|
83 |
-
|
84 |
-
|
85 |
-
class ASPPModule(nn.Module):
|
86 |
-
|
87 |
-
def __init__(self, nn_architecture, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
88 |
-
super(ASPPModule, self).__init__()
|
89 |
-
self.conv1 = nn.Sequential(
|
90 |
-
nn.AdaptiveAvgPool2d((1, None)),
|
91 |
-
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
92 |
-
)
|
93 |
-
|
94 |
-
self.nn_architecture = nn_architecture
|
95 |
-
self.six_layer = [129605]
|
96 |
-
self.seven_layer = [537238, 537227, 33966]
|
97 |
-
|
98 |
-
extra_conv = SeperableConv2DBNActiv(
|
99 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
100 |
-
|
101 |
-
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
102 |
-
self.conv3 = SeperableConv2DBNActiv(
|
103 |
-
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
104 |
-
self.conv4 = SeperableConv2DBNActiv(
|
105 |
-
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
106 |
-
self.conv5 = SeperableConv2DBNActiv(
|
107 |
-
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
108 |
-
|
109 |
-
if self.nn_architecture in self.six_layer:
|
110 |
-
self.conv6 = extra_conv
|
111 |
-
nin_x = 6
|
112 |
-
elif self.nn_architecture in self.seven_layer:
|
113 |
-
self.conv6 = extra_conv
|
114 |
-
self.conv7 = extra_conv
|
115 |
-
nin_x = 7
|
116 |
-
else:
|
117 |
-
nin_x = 5
|
118 |
-
|
119 |
-
self.bottleneck = nn.Sequential(
|
120 |
-
Conv2DBNActiv(nin * nin_x, nout, 1, 1, 0, activ=activ),
|
121 |
-
nn.Dropout2d(0.1)
|
122 |
-
)
|
123 |
-
|
124 |
-
def forward(self, x):
|
125 |
-
_, _, h, w = x.size()
|
126 |
-
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
127 |
-
feat2 = self.conv2(x)
|
128 |
-
feat3 = self.conv3(x)
|
129 |
-
feat4 = self.conv4(x)
|
130 |
-
feat5 = self.conv5(x)
|
131 |
-
|
132 |
-
if self.nn_architecture in self.six_layer:
|
133 |
-
feat6 = self.conv6(x)
|
134 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6), dim=1)
|
135 |
-
elif self.nn_architecture in self.seven_layer:
|
136 |
-
feat6 = self.conv6(x)
|
137 |
-
feat7 = self.conv7(x)
|
138 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
139 |
-
else:
|
140 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
141 |
-
|
142 |
-
bottle = self.bottleneck(out)
|
143 |
-
return bottle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/layers_new.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from lib_v5 import spec_utils
|
6 |
-
|
7 |
-
class Conv2DBNActiv(nn.Module):
|
8 |
-
|
9 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
10 |
-
super(Conv2DBNActiv, self).__init__()
|
11 |
-
self.conv = nn.Sequential(
|
12 |
-
nn.Conv2d(
|
13 |
-
nin, nout,
|
14 |
-
kernel_size=ksize,
|
15 |
-
stride=stride,
|
16 |
-
padding=pad,
|
17 |
-
dilation=dilation,
|
18 |
-
bias=False),
|
19 |
-
nn.BatchNorm2d(nout),
|
20 |
-
activ()
|
21 |
-
)
|
22 |
-
|
23 |
-
def __call__(self, x):
|
24 |
-
return self.conv(x)
|
25 |
-
|
26 |
-
class Encoder(nn.Module):
|
27 |
-
|
28 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
29 |
-
super(Encoder, self).__init__()
|
30 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
|
31 |
-
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
32 |
-
|
33 |
-
def __call__(self, x):
|
34 |
-
h = self.conv1(x)
|
35 |
-
h = self.conv2(h)
|
36 |
-
|
37 |
-
return h
|
38 |
-
|
39 |
-
|
40 |
-
class Decoder(nn.Module):
|
41 |
-
|
42 |
-
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
43 |
-
super(Decoder, self).__init__()
|
44 |
-
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
45 |
-
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
46 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
47 |
-
|
48 |
-
def __call__(self, x, skip=None):
|
49 |
-
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
50 |
-
|
51 |
-
if skip is not None:
|
52 |
-
skip = spec_utils.crop_center(skip, x)
|
53 |
-
x = torch.cat([x, skip], dim=1)
|
54 |
-
|
55 |
-
h = self.conv1(x)
|
56 |
-
# h = self.conv2(h)
|
57 |
-
|
58 |
-
if self.dropout is not None:
|
59 |
-
h = self.dropout(h)
|
60 |
-
|
61 |
-
return h
|
62 |
-
|
63 |
-
|
64 |
-
class ASPPModule(nn.Module):
|
65 |
-
|
66 |
-
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
|
67 |
-
super(ASPPModule, self).__init__()
|
68 |
-
self.conv1 = nn.Sequential(
|
69 |
-
nn.AdaptiveAvgPool2d((1, None)),
|
70 |
-
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
71 |
-
)
|
72 |
-
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
73 |
-
self.conv3 = Conv2DBNActiv(
|
74 |
-
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
|
75 |
-
)
|
76 |
-
self.conv4 = Conv2DBNActiv(
|
77 |
-
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
|
78 |
-
)
|
79 |
-
self.conv5 = Conv2DBNActiv(
|
80 |
-
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
|
81 |
-
)
|
82 |
-
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
|
83 |
-
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
84 |
-
|
85 |
-
def forward(self, x):
|
86 |
-
_, _, h, w = x.size()
|
87 |
-
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
88 |
-
feat2 = self.conv2(x)
|
89 |
-
feat3 = self.conv3(x)
|
90 |
-
feat4 = self.conv4(x)
|
91 |
-
feat5 = self.conv5(x)
|
92 |
-
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
93 |
-
out = self.bottleneck(out)
|
94 |
-
|
95 |
-
if self.dropout is not None:
|
96 |
-
out = self.dropout(out)
|
97 |
-
|
98 |
-
return out
|
99 |
-
|
100 |
-
|
101 |
-
class LSTMModule(nn.Module):
|
102 |
-
|
103 |
-
def __init__(self, nin_conv, nin_lstm, nout_lstm):
|
104 |
-
super(LSTMModule, self).__init__()
|
105 |
-
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
|
106 |
-
self.lstm = nn.LSTM(
|
107 |
-
input_size=nin_lstm,
|
108 |
-
hidden_size=nout_lstm // 2,
|
109 |
-
bidirectional=True
|
110 |
-
)
|
111 |
-
self.dense = nn.Sequential(
|
112 |
-
nn.Linear(nout_lstm, nin_lstm),
|
113 |
-
nn.BatchNorm1d(nin_lstm),
|
114 |
-
nn.ReLU()
|
115 |
-
)
|
116 |
-
|
117 |
-
def forward(self, x):
|
118 |
-
N, _, nbins, nframes = x.size()
|
119 |
-
h = self.conv(x)[:, 0] # N, nbins, nframes
|
120 |
-
h = h.permute(2, 0, 1) # nframes, N, nbins
|
121 |
-
h, _ = self.lstm(h)
|
122 |
-
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
|
123 |
-
h = h.reshape(nframes, N, 1, nbins)
|
124 |
-
h = h.permute(1, 2, 3, 0)
|
125 |
-
|
126 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/model_param_init.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
default_param = {}
|
4 |
-
default_param['bins'] = -1
|
5 |
-
default_param['unstable_bins'] = -1 # training only
|
6 |
-
default_param['stable_bins'] = -1 # training only
|
7 |
-
default_param['sr'] = 44100
|
8 |
-
default_param['pre_filter_start'] = -1
|
9 |
-
default_param['pre_filter_stop'] = -1
|
10 |
-
default_param['band'] = {}
|
11 |
-
|
12 |
-
N_BINS = 'n_bins'
|
13 |
-
|
14 |
-
def int_keys(d):
|
15 |
-
r = {}
|
16 |
-
for k, v in d:
|
17 |
-
if k.isdigit():
|
18 |
-
k = int(k)
|
19 |
-
r[k] = v
|
20 |
-
return r
|
21 |
-
|
22 |
-
class ModelParameters(object):
|
23 |
-
def __init__(self, config_path=''):
|
24 |
-
with open(config_path, 'r') as f:
|
25 |
-
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
|
26 |
-
|
27 |
-
for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
|
28 |
-
if not k in self.param:
|
29 |
-
self.param[k] = False
|
30 |
-
|
31 |
-
if N_BINS in self.param:
|
32 |
-
self.param['bins'] = self.param[N_BINS]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/1band_sr16000_hl512.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 16000,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 16000,
|
17 |
-
"pre_filter_start": 1023,
|
18 |
-
"pre_filter_stop": 1024
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/1band_sr32000_hl512.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 32000,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "kaiser_fast"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 32000,
|
17 |
-
"pre_filter_start": 1000,
|
18 |
-
"pre_filter_stop": 1021
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/1band_sr33075_hl384.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 33075,
|
8 |
-
"hl": 384,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 33075,
|
17 |
-
"pre_filter_start": 1000,
|
18 |
-
"pre_filter_stop": 1021
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/1band_sr44100_hl1024.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 1024,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 1023,
|
18 |
-
"pre_filter_stop": 1024
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/1band_sr44100_hl256.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 256,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 256,
|
9 |
-
"n_fft": 512,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 256,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 256,
|
18 |
-
"pre_filter_stop": 256
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/1band_sr44100_hl512.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 1024,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 1023,
|
18 |
-
"pre_filter_stop": 1024
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/1band_sr44100_hl512_cut.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 1024,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 2048,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 700,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 1023,
|
18 |
-
"pre_filter_stop": 700
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/1band_sr44100_hl512_nf1024.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 512,
|
3 |
-
"unstable_bins": 0,
|
4 |
-
"reduction_bins": 0,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 44100,
|
8 |
-
"hl": 512,
|
9 |
-
"n_fft": 1024,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 512,
|
12 |
-
"hpf_start": -1,
|
13 |
-
"res_type": "sinc_best"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"sr": 44100,
|
17 |
-
"pre_filter_start": 511,
|
18 |
-
"pre_filter_stop": 512
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/2band_32000.json
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"reduction_bins": 705,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 6000,
|
8 |
-
"hl": 66,
|
9 |
-
"n_fft": 512,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 240,
|
12 |
-
"lpf_start": 60,
|
13 |
-
"lpf_stop": 118,
|
14 |
-
"res_type": "sinc_fastest"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 32000,
|
18 |
-
"hl": 352,
|
19 |
-
"n_fft": 1024,
|
20 |
-
"crop_start": 22,
|
21 |
-
"crop_stop": 505,
|
22 |
-
"hpf_start": 44,
|
23 |
-
"hpf_stop": 23,
|
24 |
-
"res_type": "sinc_medium"
|
25 |
-
}
|
26 |
-
},
|
27 |
-
"sr": 32000,
|
28 |
-
"pre_filter_start": 710,
|
29 |
-
"pre_filter_stop": 731
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/2band_44100_lofi.json
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 512,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"reduction_bins": 510,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 11025,
|
8 |
-
"hl": 160,
|
9 |
-
"n_fft": 768,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 192,
|
12 |
-
"lpf_start": 41,
|
13 |
-
"lpf_stop": 139,
|
14 |
-
"res_type": "sinc_fastest"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 44100,
|
18 |
-
"hl": 640,
|
19 |
-
"n_fft": 1024,
|
20 |
-
"crop_start": 10,
|
21 |
-
"crop_stop": 320,
|
22 |
-
"hpf_start": 47,
|
23 |
-
"hpf_stop": 15,
|
24 |
-
"res_type": "sinc_medium"
|
25 |
-
}
|
26 |
-
},
|
27 |
-
"sr": 44100,
|
28 |
-
"pre_filter_start": 510,
|
29 |
-
"pre_filter_stop": 512
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/2band_48000.json
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"reduction_bins": 705,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 6000,
|
8 |
-
"hl": 66,
|
9 |
-
"n_fft": 512,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 240,
|
12 |
-
"lpf_start": 60,
|
13 |
-
"lpf_stop": 240,
|
14 |
-
"res_type": "sinc_fastest"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 48000,
|
18 |
-
"hl": 528,
|
19 |
-
"n_fft": 1536,
|
20 |
-
"crop_start": 22,
|
21 |
-
"crop_stop": 505,
|
22 |
-
"hpf_start": 82,
|
23 |
-
"hpf_stop": 22,
|
24 |
-
"res_type": "sinc_medium"
|
25 |
-
}
|
26 |
-
},
|
27 |
-
"sr": 48000,
|
28 |
-
"pre_filter_start": 710,
|
29 |
-
"pre_filter_stop": 731
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/3band_44100.json
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 5,
|
4 |
-
"reduction_bins": 733,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 11025,
|
8 |
-
"hl": 128,
|
9 |
-
"n_fft": 768,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 278,
|
12 |
-
"lpf_start": 28,
|
13 |
-
"lpf_stop": 140,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 22050,
|
18 |
-
"hl": 256,
|
19 |
-
"n_fft": 768,
|
20 |
-
"crop_start": 14,
|
21 |
-
"crop_stop": 322,
|
22 |
-
"hpf_start": 70,
|
23 |
-
"hpf_stop": 14,
|
24 |
-
"lpf_start": 283,
|
25 |
-
"lpf_stop": 314,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 44100,
|
30 |
-
"hl": 512,
|
31 |
-
"n_fft": 768,
|
32 |
-
"crop_start": 131,
|
33 |
-
"crop_stop": 313,
|
34 |
-
"hpf_start": 154,
|
35 |
-
"hpf_stop": 141,
|
36 |
-
"res_type": "sinc_medium"
|
37 |
-
}
|
38 |
-
},
|
39 |
-
"sr": 44100,
|
40 |
-
"pre_filter_start": 757,
|
41 |
-
"pre_filter_stop": 768
|
42 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/3band_44100_mid.json
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 5,
|
5 |
-
"reduction_bins": 733,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 768,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 278,
|
13 |
-
"lpf_start": 28,
|
14 |
-
"lpf_stop": 140,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 22050,
|
19 |
-
"hl": 256,
|
20 |
-
"n_fft": 768,
|
21 |
-
"crop_start": 14,
|
22 |
-
"crop_stop": 322,
|
23 |
-
"hpf_start": 70,
|
24 |
-
"hpf_stop": 14,
|
25 |
-
"lpf_start": 283,
|
26 |
-
"lpf_stop": 314,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 44100,
|
31 |
-
"hl": 512,
|
32 |
-
"n_fft": 768,
|
33 |
-
"crop_start": 131,
|
34 |
-
"crop_stop": 313,
|
35 |
-
"hpf_start": 154,
|
36 |
-
"hpf_stop": 141,
|
37 |
-
"res_type": "sinc_medium"
|
38 |
-
}
|
39 |
-
},
|
40 |
-
"sr": 44100,
|
41 |
-
"pre_filter_start": 757,
|
42 |
-
"pre_filter_stop": 768
|
43 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/3band_44100_msb2.json
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side_b2": true,
|
3 |
-
"bins": 640,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 565,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 108,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 187,
|
13 |
-
"lpf_start": 92,
|
14 |
-
"lpf_stop": 186,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 22050,
|
19 |
-
"hl": 216,
|
20 |
-
"n_fft": 768,
|
21 |
-
"crop_start": 0,
|
22 |
-
"crop_stop": 212,
|
23 |
-
"hpf_start": 68,
|
24 |
-
"hpf_stop": 34,
|
25 |
-
"lpf_start": 174,
|
26 |
-
"lpf_stop": 209,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 44100,
|
31 |
-
"hl": 432,
|
32 |
-
"n_fft": 640,
|
33 |
-
"crop_start": 66,
|
34 |
-
"crop_stop": 307,
|
35 |
-
"hpf_start": 86,
|
36 |
-
"hpf_stop": 72,
|
37 |
-
"res_type": "kaiser_fast"
|
38 |
-
}
|
39 |
-
},
|
40 |
-
"sr": 44100,
|
41 |
-
"pre_filter_start": 639,
|
42 |
-
"pre_filter_stop": 640
|
43 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_44100.json
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"reduction_bins": 668,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 11025,
|
8 |
-
"hl": 128,
|
9 |
-
"n_fft": 1024,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 186,
|
12 |
-
"lpf_start": 37,
|
13 |
-
"lpf_stop": 73,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 11025,
|
18 |
-
"hl": 128,
|
19 |
-
"n_fft": 512,
|
20 |
-
"crop_start": 4,
|
21 |
-
"crop_stop": 185,
|
22 |
-
"hpf_start": 36,
|
23 |
-
"hpf_stop": 18,
|
24 |
-
"lpf_start": 93,
|
25 |
-
"lpf_stop": 185,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 22050,
|
30 |
-
"hl": 256,
|
31 |
-
"n_fft": 512,
|
32 |
-
"crop_start": 46,
|
33 |
-
"crop_stop": 186,
|
34 |
-
"hpf_start": 93,
|
35 |
-
"hpf_stop": 46,
|
36 |
-
"lpf_start": 164,
|
37 |
-
"lpf_stop": 186,
|
38 |
-
"res_type": "polyphase"
|
39 |
-
},
|
40 |
-
"4": {
|
41 |
-
"sr": 44100,
|
42 |
-
"hl": 512,
|
43 |
-
"n_fft": 768,
|
44 |
-
"crop_start": 121,
|
45 |
-
"crop_stop": 382,
|
46 |
-
"hpf_start": 138,
|
47 |
-
"hpf_stop": 123,
|
48 |
-
"res_type": "sinc_medium"
|
49 |
-
}
|
50 |
-
},
|
51 |
-
"sr": 44100,
|
52 |
-
"pre_filter_start": 740,
|
53 |
-
"pre_filter_stop": 768
|
54 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_44100_mid.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 768,
|
3 |
-
"unstable_bins": 7,
|
4 |
-
"mid_side": true,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_44100_msb.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side_b": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_44100_msb2.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side_b": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_44100_reverse.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"reverse": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_44100_sw.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"stereo_w": true,
|
3 |
-
"bins": 768,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 668,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 128,
|
10 |
-
"n_fft": 1024,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 186,
|
13 |
-
"lpf_start": 37,
|
14 |
-
"lpf_stop": 73,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 11025,
|
19 |
-
"hl": 128,
|
20 |
-
"n_fft": 512,
|
21 |
-
"crop_start": 4,
|
22 |
-
"crop_stop": 185,
|
23 |
-
"hpf_start": 36,
|
24 |
-
"hpf_stop": 18,
|
25 |
-
"lpf_start": 93,
|
26 |
-
"lpf_stop": 185,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 22050,
|
31 |
-
"hl": 256,
|
32 |
-
"n_fft": 512,
|
33 |
-
"crop_start": 46,
|
34 |
-
"crop_stop": 186,
|
35 |
-
"hpf_start": 93,
|
36 |
-
"hpf_stop": 46,
|
37 |
-
"lpf_start": 164,
|
38 |
-
"lpf_stop": 186,
|
39 |
-
"res_type": "polyphase"
|
40 |
-
},
|
41 |
-
"4": {
|
42 |
-
"sr": 44100,
|
43 |
-
"hl": 512,
|
44 |
-
"n_fft": 768,
|
45 |
-
"crop_start": 121,
|
46 |
-
"crop_stop": 382,
|
47 |
-
"hpf_start": 138,
|
48 |
-
"hpf_stop": 123,
|
49 |
-
"res_type": "sinc_medium"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 740,
|
54 |
-
"pre_filter_stop": 768
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_v2.json
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 672,
|
3 |
-
"unstable_bins": 8,
|
4 |
-
"reduction_bins": 637,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 7350,
|
8 |
-
"hl": 80,
|
9 |
-
"n_fft": 640,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 85,
|
12 |
-
"lpf_start": 25,
|
13 |
-
"lpf_stop": 53,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 7350,
|
18 |
-
"hl": 80,
|
19 |
-
"n_fft": 320,
|
20 |
-
"crop_start": 4,
|
21 |
-
"crop_stop": 87,
|
22 |
-
"hpf_start": 25,
|
23 |
-
"hpf_stop": 12,
|
24 |
-
"lpf_start": 31,
|
25 |
-
"lpf_stop": 62,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 14700,
|
30 |
-
"hl": 160,
|
31 |
-
"n_fft": 512,
|
32 |
-
"crop_start": 17,
|
33 |
-
"crop_stop": 216,
|
34 |
-
"hpf_start": 48,
|
35 |
-
"hpf_stop": 24,
|
36 |
-
"lpf_start": 139,
|
37 |
-
"lpf_stop": 210,
|
38 |
-
"res_type": "polyphase"
|
39 |
-
},
|
40 |
-
"4": {
|
41 |
-
"sr": 44100,
|
42 |
-
"hl": 480,
|
43 |
-
"n_fft": 960,
|
44 |
-
"crop_start": 78,
|
45 |
-
"crop_stop": 383,
|
46 |
-
"hpf_start": 130,
|
47 |
-
"hpf_stop": 86,
|
48 |
-
"res_type": "kaiser_fast"
|
49 |
-
}
|
50 |
-
},
|
51 |
-
"sr": 44100,
|
52 |
-
"pre_filter_start": 668,
|
53 |
-
"pre_filter_stop": 672
|
54 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_v2_sn.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 672,
|
3 |
-
"unstable_bins": 8,
|
4 |
-
"reduction_bins": 637,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 7350,
|
8 |
-
"hl": 80,
|
9 |
-
"n_fft": 640,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 85,
|
12 |
-
"lpf_start": 25,
|
13 |
-
"lpf_stop": 53,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 7350,
|
18 |
-
"hl": 80,
|
19 |
-
"n_fft": 320,
|
20 |
-
"crop_start": 4,
|
21 |
-
"crop_stop": 87,
|
22 |
-
"hpf_start": 25,
|
23 |
-
"hpf_stop": 12,
|
24 |
-
"lpf_start": 31,
|
25 |
-
"lpf_stop": 62,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 14700,
|
30 |
-
"hl": 160,
|
31 |
-
"n_fft": 512,
|
32 |
-
"crop_start": 17,
|
33 |
-
"crop_stop": 216,
|
34 |
-
"hpf_start": 48,
|
35 |
-
"hpf_stop": 24,
|
36 |
-
"lpf_start": 139,
|
37 |
-
"lpf_stop": 210,
|
38 |
-
"res_type": "polyphase"
|
39 |
-
},
|
40 |
-
"4": {
|
41 |
-
"sr": 44100,
|
42 |
-
"hl": 480,
|
43 |
-
"n_fft": 960,
|
44 |
-
"crop_start": 78,
|
45 |
-
"crop_stop": 383,
|
46 |
-
"hpf_start": 130,
|
47 |
-
"hpf_stop": 86,
|
48 |
-
"convert_channels": "stereo_n",
|
49 |
-
"res_type": "kaiser_fast"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 668,
|
54 |
-
"pre_filter_stop": 672
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_v3.json
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bins": 672,
|
3 |
-
"unstable_bins": 8,
|
4 |
-
"reduction_bins": 530,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 7350,
|
8 |
-
"hl": 80,
|
9 |
-
"n_fft": 640,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 85,
|
12 |
-
"lpf_start": 25,
|
13 |
-
"lpf_stop": 53,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 7350,
|
18 |
-
"hl": 80,
|
19 |
-
"n_fft": 320,
|
20 |
-
"crop_start": 4,
|
21 |
-
"crop_stop": 87,
|
22 |
-
"hpf_start": 25,
|
23 |
-
"hpf_stop": 12,
|
24 |
-
"lpf_start": 31,
|
25 |
-
"lpf_stop": 62,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 14700,
|
30 |
-
"hl": 160,
|
31 |
-
"n_fft": 512,
|
32 |
-
"crop_start": 17,
|
33 |
-
"crop_stop": 216,
|
34 |
-
"hpf_start": 48,
|
35 |
-
"hpf_stop": 24,
|
36 |
-
"lpf_start": 139,
|
37 |
-
"lpf_stop": 210,
|
38 |
-
"res_type": "polyphase"
|
39 |
-
},
|
40 |
-
"4": {
|
41 |
-
"sr": 44100,
|
42 |
-
"hl": 480,
|
43 |
-
"n_fft": 960,
|
44 |
-
"crop_start": 78,
|
45 |
-
"crop_stop": 383,
|
46 |
-
"hpf_start": 130,
|
47 |
-
"hpf_stop": 86,
|
48 |
-
"res_type": "kaiser_fast"
|
49 |
-
}
|
50 |
-
},
|
51 |
-
"sr": 44100,
|
52 |
-
"pre_filter_start": 668,
|
53 |
-
"pre_filter_stop": 672
|
54 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/4band_v3_sn.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"n_bins": 672,
|
3 |
-
"unstable_bins": 8,
|
4 |
-
"stable_bins": 530,
|
5 |
-
"band": {
|
6 |
-
"1": {
|
7 |
-
"sr": 7350,
|
8 |
-
"hl": 80,
|
9 |
-
"n_fft": 640,
|
10 |
-
"crop_start": 0,
|
11 |
-
"crop_stop": 85,
|
12 |
-
"lpf_start": 25,
|
13 |
-
"lpf_stop": 53,
|
14 |
-
"res_type": "polyphase"
|
15 |
-
},
|
16 |
-
"2": {
|
17 |
-
"sr": 7350,
|
18 |
-
"hl": 80,
|
19 |
-
"n_fft": 320,
|
20 |
-
"crop_start": 4,
|
21 |
-
"crop_stop": 87,
|
22 |
-
"hpf_start": 25,
|
23 |
-
"hpf_stop": 12,
|
24 |
-
"lpf_start": 31,
|
25 |
-
"lpf_stop": 62,
|
26 |
-
"res_type": "polyphase"
|
27 |
-
},
|
28 |
-
"3": {
|
29 |
-
"sr": 14700,
|
30 |
-
"hl": 160,
|
31 |
-
"n_fft": 512,
|
32 |
-
"crop_start": 17,
|
33 |
-
"crop_stop": 216,
|
34 |
-
"hpf_start": 48,
|
35 |
-
"hpf_stop": 24,
|
36 |
-
"lpf_start": 139,
|
37 |
-
"lpf_stop": 210,
|
38 |
-
"res_type": "polyphase"
|
39 |
-
},
|
40 |
-
"4": {
|
41 |
-
"sr": 44100,
|
42 |
-
"hl": 480,
|
43 |
-
"n_fft": 960,
|
44 |
-
"crop_start": 78,
|
45 |
-
"crop_stop": 383,
|
46 |
-
"hpf_start": 130,
|
47 |
-
"hpf_stop": 86,
|
48 |
-
"convert_channels": "stereo_n",
|
49 |
-
"res_type": "kaiser_fast"
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"sr": 44100,
|
53 |
-
"pre_filter_start": 668,
|
54 |
-
"pre_filter_stop": 672
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/modelparams/ensemble.json
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"mid_side_b2": true,
|
3 |
-
"bins": 1280,
|
4 |
-
"unstable_bins": 7,
|
5 |
-
"reduction_bins": 565,
|
6 |
-
"band": {
|
7 |
-
"1": {
|
8 |
-
"sr": 11025,
|
9 |
-
"hl": 108,
|
10 |
-
"n_fft": 2048,
|
11 |
-
"crop_start": 0,
|
12 |
-
"crop_stop": 374,
|
13 |
-
"lpf_start": 92,
|
14 |
-
"lpf_stop": 186,
|
15 |
-
"res_type": "polyphase"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"sr": 22050,
|
19 |
-
"hl": 216,
|
20 |
-
"n_fft": 1536,
|
21 |
-
"crop_start": 0,
|
22 |
-
"crop_stop": 424,
|
23 |
-
"hpf_start": 68,
|
24 |
-
"hpf_stop": 34,
|
25 |
-
"lpf_start": 348,
|
26 |
-
"lpf_stop": 418,
|
27 |
-
"res_type": "polyphase"
|
28 |
-
},
|
29 |
-
"3": {
|
30 |
-
"sr": 44100,
|
31 |
-
"hl": 432,
|
32 |
-
"n_fft": 1280,
|
33 |
-
"crop_start": 132,
|
34 |
-
"crop_stop": 614,
|
35 |
-
"hpf_start": 172,
|
36 |
-
"hpf_stop": 144,
|
37 |
-
"res_type": "polyphase"
|
38 |
-
}
|
39 |
-
},
|
40 |
-
"sr": 44100,
|
41 |
-
"pre_filter_start": 1280,
|
42 |
-
"pre_filter_stop": 1280
|
43 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/nets.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from . import layers
|
6 |
-
|
7 |
-
class BaseASPPNet(nn.Module):
|
8 |
-
|
9 |
-
def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)):
|
10 |
-
super(BaseASPPNet, self).__init__()
|
11 |
-
self.nn_architecture = nn_architecture
|
12 |
-
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
13 |
-
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
14 |
-
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
15 |
-
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
16 |
-
|
17 |
-
if self.nn_architecture == 129605:
|
18 |
-
self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1)
|
19 |
-
self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations)
|
20 |
-
self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1)
|
21 |
-
else:
|
22 |
-
self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations)
|
23 |
-
|
24 |
-
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
25 |
-
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
26 |
-
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
27 |
-
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
28 |
-
|
29 |
-
def __call__(self, x):
|
30 |
-
h, e1 = self.enc1(x)
|
31 |
-
h, e2 = self.enc2(h)
|
32 |
-
h, e3 = self.enc3(h)
|
33 |
-
h, e4 = self.enc4(h)
|
34 |
-
|
35 |
-
if self.nn_architecture == 129605:
|
36 |
-
h, e5 = self.enc5(h)
|
37 |
-
h = self.aspp(h)
|
38 |
-
h = self.dec5(h, e5)
|
39 |
-
else:
|
40 |
-
h = self.aspp(h)
|
41 |
-
|
42 |
-
h = self.dec4(h, e4)
|
43 |
-
h = self.dec3(h, e3)
|
44 |
-
h = self.dec2(h, e2)
|
45 |
-
h = self.dec1(h, e1)
|
46 |
-
|
47 |
-
return h
|
48 |
-
|
49 |
-
def determine_model_capacity(n_fft_bins, nn_architecture):
|
50 |
-
|
51 |
-
sp_model_arch = [31191, 33966, 129605]
|
52 |
-
hp_model_arch = [123821, 123812]
|
53 |
-
hp2_model_arch = [537238, 537227]
|
54 |
-
|
55 |
-
if nn_architecture in sp_model_arch:
|
56 |
-
model_capacity_data = [
|
57 |
-
(2, 16),
|
58 |
-
(2, 16),
|
59 |
-
(18, 8, 1, 1, 0),
|
60 |
-
(8, 16),
|
61 |
-
(34, 16, 1, 1, 0),
|
62 |
-
(16, 32),
|
63 |
-
(32, 2, 1),
|
64 |
-
(16, 2, 1),
|
65 |
-
(16, 2, 1),
|
66 |
-
]
|
67 |
-
|
68 |
-
if nn_architecture in hp_model_arch:
|
69 |
-
model_capacity_data = [
|
70 |
-
(2, 32),
|
71 |
-
(2, 32),
|
72 |
-
(34, 16, 1, 1, 0),
|
73 |
-
(16, 32),
|
74 |
-
(66, 32, 1, 1, 0),
|
75 |
-
(32, 64),
|
76 |
-
(64, 2, 1),
|
77 |
-
(32, 2, 1),
|
78 |
-
(32, 2, 1),
|
79 |
-
]
|
80 |
-
|
81 |
-
if nn_architecture in hp2_model_arch:
|
82 |
-
model_capacity_data = [
|
83 |
-
(2, 64),
|
84 |
-
(2, 64),
|
85 |
-
(66, 32, 1, 1, 0),
|
86 |
-
(32, 64),
|
87 |
-
(130, 64, 1, 1, 0),
|
88 |
-
(64, 128),
|
89 |
-
(128, 2, 1),
|
90 |
-
(64, 2, 1),
|
91 |
-
(64, 2, 1),
|
92 |
-
]
|
93 |
-
|
94 |
-
cascaded = CascadedASPPNet
|
95 |
-
model = cascaded(n_fft_bins, model_capacity_data, nn_architecture)
|
96 |
-
|
97 |
-
return model
|
98 |
-
|
99 |
-
class CascadedASPPNet(nn.Module):
|
100 |
-
|
101 |
-
def __init__(self, n_fft, model_capacity_data, nn_architecture):
|
102 |
-
super(CascadedASPPNet, self).__init__()
|
103 |
-
self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0])
|
104 |
-
self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1])
|
105 |
-
|
106 |
-
self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2])
|
107 |
-
self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3])
|
108 |
-
|
109 |
-
self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4])
|
110 |
-
self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5])
|
111 |
-
|
112 |
-
self.out = nn.Conv2d(*model_capacity_data[6], bias=False)
|
113 |
-
self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False)
|
114 |
-
self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False)
|
115 |
-
|
116 |
-
self.max_bin = n_fft // 2
|
117 |
-
self.output_bin = n_fft // 2 + 1
|
118 |
-
|
119 |
-
self.offset = 128
|
120 |
-
|
121 |
-
def forward(self, x):
|
122 |
-
mix = x.detach()
|
123 |
-
x = x.clone()
|
124 |
-
|
125 |
-
x = x[:, :, :self.max_bin]
|
126 |
-
|
127 |
-
bandw = x.size()[2] // 2
|
128 |
-
aux1 = torch.cat([
|
129 |
-
self.stg1_low_band_net(x[:, :, :bandw]),
|
130 |
-
self.stg1_high_band_net(x[:, :, bandw:])
|
131 |
-
], dim=2)
|
132 |
-
|
133 |
-
h = torch.cat([x, aux1], dim=1)
|
134 |
-
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
135 |
-
|
136 |
-
h = torch.cat([x, aux1, aux2], dim=1)
|
137 |
-
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
138 |
-
|
139 |
-
mask = torch.sigmoid(self.out(h))
|
140 |
-
mask = F.pad(
|
141 |
-
input=mask,
|
142 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
143 |
-
mode='replicate')
|
144 |
-
|
145 |
-
if self.training:
|
146 |
-
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
147 |
-
aux1 = F.pad(
|
148 |
-
input=aux1,
|
149 |
-
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
150 |
-
mode='replicate')
|
151 |
-
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
152 |
-
aux2 = F.pad(
|
153 |
-
input=aux2,
|
154 |
-
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
155 |
-
mode='replicate')
|
156 |
-
return mask * mix, aux1 * mix, aux2 * mix
|
157 |
-
else:
|
158 |
-
return mask# * mix
|
159 |
-
|
160 |
-
def predict_mask(self, x):
|
161 |
-
mask = self.forward(x)
|
162 |
-
|
163 |
-
if self.offset > 0:
|
164 |
-
mask = mask[:, :, :, self.offset:-self.offset]
|
165 |
-
|
166 |
-
return mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib_v5/vr_network/nets_new.py
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from . import layers_new as layers
|
5 |
-
|
6 |
-
class BaseNet(nn.Module):
|
7 |
-
|
8 |
-
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
|
9 |
-
super(BaseNet, self).__init__()
|
10 |
-
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
|
11 |
-
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
|
12 |
-
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
|
13 |
-
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
|
14 |
-
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
|
15 |
-
|
16 |
-
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
|
17 |
-
|
18 |
-
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
|
19 |
-
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
|
20 |
-
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
|
21 |
-
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
|
22 |
-
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
|
23 |
-
|
24 |
-
def __call__(self, x):
|
25 |
-
e1 = self.enc1(x)
|
26 |
-
e2 = self.enc2(e1)
|
27 |
-
e3 = self.enc3(e2)
|
28 |
-
e4 = self.enc4(e3)
|
29 |
-
e5 = self.enc5(e4)
|
30 |
-
|
31 |
-
h = self.aspp(e5)
|
32 |
-
|
33 |
-
h = self.dec4(h, e4)
|
34 |
-
h = self.dec3(h, e3)
|
35 |
-
h = self.dec2(h, e2)
|
36 |
-
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
|
37 |
-
h = self.dec1(h, e1)
|
38 |
-
|
39 |
-
return h
|
40 |
-
|
41 |
-
class CascadedNet(nn.Module):
|
42 |
-
|
43 |
-
def __init__(self, n_fft, nn_arch_size=51000, nout=32, nout_lstm=128):
|
44 |
-
super(CascadedNet, self).__init__()
|
45 |
-
self.max_bin = n_fft // 2
|
46 |
-
self.output_bin = n_fft // 2 + 1
|
47 |
-
self.nin_lstm = self.max_bin // 2
|
48 |
-
self.offset = 64
|
49 |
-
nout = 64 if nn_arch_size == 218409 else nout
|
50 |
-
|
51 |
-
#print(nout, nout_lstm, n_fft)
|
52 |
-
|
53 |
-
self.stg1_low_band_net = nn.Sequential(
|
54 |
-
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
|
55 |
-
layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0)
|
56 |
-
)
|
57 |
-
self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2)
|
58 |
-
|
59 |
-
self.stg2_low_band_net = nn.Sequential(
|
60 |
-
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
|
61 |
-
layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0)
|
62 |
-
)
|
63 |
-
self.stg2_high_band_net = BaseNet(nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2)
|
64 |
-
|
65 |
-
self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm)
|
66 |
-
|
67 |
-
self.out = nn.Conv2d(nout, 2, 1, bias=False)
|
68 |
-
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
|
69 |
-
|
70 |
-
def forward(self, x):
|
71 |
-
x = x[:, :, :self.max_bin]
|
72 |
-
|
73 |
-
bandw = x.size()[2] // 2
|
74 |
-
l1_in = x[:, :, :bandw]
|
75 |
-
h1_in = x[:, :, bandw:]
|
76 |
-
l1 = self.stg1_low_band_net(l1_in)
|
77 |
-
h1 = self.stg1_high_band_net(h1_in)
|
78 |
-
aux1 = torch.cat([l1, h1], dim=2)
|
79 |
-
|
80 |
-
l2_in = torch.cat([l1_in, l1], dim=1)
|
81 |
-
h2_in = torch.cat([h1_in, h1], dim=1)
|
82 |
-
l2 = self.stg2_low_band_net(l2_in)
|
83 |
-
h2 = self.stg2_high_band_net(h2_in)
|
84 |
-
aux2 = torch.cat([l2, h2], dim=2)
|
85 |
-
|
86 |
-
f3_in = torch.cat([x, aux1, aux2], dim=1)
|
87 |
-
f3 = self.stg3_full_band_net(f3_in)
|
88 |
-
|
89 |
-
mask = torch.sigmoid(self.out(f3))
|
90 |
-
mask = F.pad(
|
91 |
-
input=mask,
|
92 |
-
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
93 |
-
mode='replicate'
|
94 |
-
)
|
95 |
-
|
96 |
-
if self.training:
|
97 |
-
aux = torch.cat([aux1, aux2], dim=1)
|
98 |
-
aux = torch.sigmoid(self.aux_out(aux))
|
99 |
-
aux = F.pad(
|
100 |
-
input=aux,
|
101 |
-
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
|
102 |
-
mode='replicate'
|
103 |
-
)
|
104 |
-
return mask, aux
|
105 |
-
else:
|
106 |
-
return mask
|
107 |
-
|
108 |
-
def predict_mask(self, x):
|
109 |
-
mask = self.forward(x)
|
110 |
-
|
111 |
-
if self.offset > 0:
|
112 |
-
mask = mask[:, :, :, self.offset:-self.offset]
|
113 |
-
assert mask.size()[3] > 0
|
114 |
-
|
115 |
-
return mask
|
116 |
-
|
117 |
-
def predict(self, x):
|
118 |
-
mask = self.forward(x)
|
119 |
-
pred_mag = x * mask
|
120 |
-
|
121 |
-
if self.offset > 0:
|
122 |
-
pred_mag = pred_mag[:, :, :, self.offset:-self.offset]
|
123 |
-
assert pred_mag.size()[3] > 0
|
124 |
-
|
125 |
-
return pred_mag
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|