UVR5 / lib_v5 /spec_utils.py
Eddycrack864's picture
Upload 38 files
8573118 verified
raw
history blame
No virus
43.9 kB
import audioread
import librosa
import numpy as np
import soundfile as sf
import math
import platform
import traceback
from . import pyrb
from scipy.signal import correlate, hilbert
import io
OPERATING_SYSTEM = platform.system()
SYSTEM_ARCH = platform.platform()
SYSTEM_PROC = platform.processor()
ARM = 'arm'
AUTO_PHASE = "Automatic"
POSITIVE_PHASE = "Positive Phase"
NEGATIVE_PHASE = "Negative Phase"
NONE_P = "None",
LOW_P = "Shifts: Low",
MED_P = "Shifts: Medium",
HIGH_P = "Shifts: High",
VHIGH_P = "Shifts: Very High"
MAXIMUM_P = "Shifts: Maximum"
progress_value = 0
last_update_time = 0
is_macos = False
if OPERATING_SYSTEM == 'Windows':
from pyrubberband import pyrb
else:
from . import pyrb
if OPERATING_SYSTEM == 'Darwin':
wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest"
wav_resolution_float_resampling = "kaiser_best" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else wav_resolution
is_macos = True
else:
wav_resolution = "sinc_fastest"
wav_resolution_float_resampling = wav_resolution
MAX_SPEC = 'Max Spec'
MIN_SPEC = 'Min Spec'
LIN_ENSE = 'Linear Ensemble'
MAX_WAV = MAX_SPEC
MIN_WAV = MIN_SPEC
AVERAGE = 'Average'
def crop_center(h1, h2):
h1_shape = h1.size()
h2_shape = h2.size()
if h1_shape[3] == h2_shape[3]:
return h1
elif h1_shape[3] < h2_shape[3]:
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
s_time = (h1_shape[3] - h2_shape[3]) // 2
e_time = s_time + h2_shape[3]
h1 = h1[:, :, :, s_time:e_time]
return h1
def preprocess(X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
def make_padding(width, cropsize, offset):
left = offset
roi_size = cropsize - offset * 2
if roi_size == 0:
roi_size = cropsize
right = roi_size - (width % roi_size) + left
return left, right, roi_size
def normalize(wave, is_normalize=False):
"""Normalize audio"""
maxv = np.abs(wave).max()
if maxv > 1.0:
if is_normalize:
print("Above clipping threshold.")
wave /= maxv
return wave
def auto_transpose(audio_array:np.ndarray):
"""
Ensure that the audio array is in the (channels, samples) format.
Parameters:
audio_array (ndarray): Input audio array.
Returns:
ndarray: Transposed audio array if necessary.
"""
# If the second dimension is 2 (indicating stereo channels), transpose the array
if audio_array.shape[1] == 2:
return audio_array.T
return audio_array
def write_array_to_mem(audio_data, subtype):
if isinstance(audio_data, np.ndarray):
audio_buffer = io.BytesIO()
sf.write(audio_buffer, audio_data, 44100, subtype=subtype, format='WAV')
audio_buffer.seek(0)
return audio_buffer
else:
return audio_data
def spectrogram_to_image(spec, mode='magnitude'):
if mode == 'magnitude':
if np.iscomplexobj(spec):
y = np.abs(spec)
else:
y = spec
y = np.log10(y ** 2 + 1e-8)
elif mode == 'phase':
if np.iscomplexobj(spec):
y = np.angle(spec)
else:
y = spec
y -= y.min()
y *= 255 / y.max()
img = np.uint8(y)
if y.ndim == 3:
img = img.transpose(1, 2, 0)
img = np.concatenate([
np.max(img, axis=2, keepdims=True), img
], axis=2)
return img
def reduce_vocal_aggressively(X, y, softmask):
v = X - y
y_mag_tmp = np.abs(y)
v_mag_tmp = np.abs(v)
v_mask = v_mag_tmp > y_mag_tmp
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
return y_mag * np.exp(1.j * np.angle(y))
def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
mask = y_mask
try:
if min_range < fade_size * 2:
raise ValueError('min_range must be >= fade_size * 2')
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
weight = np.zeros_like(y_mask)
if len(artifact_idx) > 0:
start_idx = start_idx[artifact_idx]
end_idx = end_idx[artifact_idx]
old_e = None
for s, e in zip(start_idx, end_idx):
if old_e is not None and s - old_e < fade_size:
s = old_e - fade_size * 2
if s != 0:
weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
else:
s -= fade_size
if e != y_mask.shape[2]:
weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
else:
e += fade_size
weight[:, :, s + fade_size:e - fade_size] = 1
old_e = e
v_mask = 1 - y_mask
y_mask += weight * v_mask
mask = y_mask
except Exception as e:
error_name = f'{type(e).__name__}'
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'{error_name}: "{e}"\n{traceback_text}"'
print('Post Process Failed: ', message)
return mask
def align_wave_head_and_tail(a, b):
l = min([a[0].size, b[0].size])
return a[:l,:l], b[:l,:l]
def convert_channels(spec, mp, band):
cc = mp.param['band'][band].get('convert_channels')
if 'mid_side_c' == cc:
spec_left = np.add(spec[0], spec[1] * .25)
spec_right = np.subtract(spec[1], spec[0] * .25)
elif 'mid_side' == cc:
spec_left = np.add(spec[0], spec[1]) / 2
spec_right = np.subtract(spec[0], spec[1])
elif 'stereo_n' == cc:
spec_left = np.add(spec[0], spec[1] * .25) / 0.9375
spec_right = np.add(spec[1], spec[0] * .25) / 0.9375
else:
return spec
return np.asfortranarray([spec_left, spec_right])
def combine_spectrograms(specs, mp, is_v51_model=False):
l = min([specs[i].shape[2] for i in specs])
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
offset = 0
bands_n = len(mp.param['band'])
for d in range(1, bands_n + 1):
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
offset += h
if offset > mp.param['bins']:
raise ValueError('Too much bins')
# lowpass fiter
if mp.param['pre_filter_start'] > 0:
if is_v51_model:
spec_c *= get_lp_filter_mask(spec_c.shape[1], mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
else:
if bands_n == 1:
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
else:
gp = 1
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
gp = g
spec_c[:, b, :] *= g
return np.asfortranarray(spec_c)
def wave_to_spectrogram(wave, hop_length, n_fft, mp, band, is_v51_model=False):
if wave.ndim == 1:
wave = np.asfortranarray([wave,wave])
if not is_v51_model:
if mp.param['reverse']:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mp.param['mid_side']:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mp.param['mid_side_b2']:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
if is_v51_model:
spec = convert_channels(spec, mp, band)
return spec
def spectrogram_to_wave(spec, hop_length=1024, mp={}, band=0, is_v51_model=True):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
if is_v51_model:
cc = mp.param['band'][band].get('convert_channels')
if 'mid_side_c' == cc:
return np.asfortranarray([np.subtract(wave_left / 1.0625, wave_right / 4.25), np.add(wave_right / 1.0625, wave_left / 4.25)])
elif 'mid_side' == cc:
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif 'stereo_n' == cc:
return np.asfortranarray([np.subtract(wave_left, wave_right * .25), np.subtract(wave_right, wave_left * .25)])
else:
if mp.param['reverse']:
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mp.param['mid_side']:
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif mp.param['mid_side_b2']:
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
return np.asfortranarray([wave_left, wave_right])
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None, is_v51_model=False):
bands_n = len(mp.param['band'])
offset = 0
for d in range(1, bands_n + 1):
bp = mp.param['band'][d]
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
h = bp['crop_stop'] - bp['crop_start']
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
offset += h
if d == bands_n: # higher
if extra_bins_h: # if --high_end_process bypass
max_bin = bp['n_fft'] // 2
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
if bp['hpf_start'] > 0:
if is_v51_model:
spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
else:
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
if bands_n == 1:
wave = spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model)
else:
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
else:
sr = mp.param['band'][d+1]['sr']
if d == 1: # lower
if is_v51_model:
spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
else:
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model), bp['sr'], sr, res_type=wav_resolution)
else: # mid
if is_v51_model:
spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
else:
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution)
return wave
def get_lp_filter_mask(n_bins, bin_start, bin_stop):
mask = np.concatenate([
np.ones((bin_start - 1, 1)),
np.linspace(1, 0, bin_stop - bin_start + 1)[:, None],
np.zeros((n_bins - bin_stop, 1))
], axis=0)
return mask
def get_hp_filter_mask(n_bins, bin_start, bin_stop):
mask = np.concatenate([
np.zeros((bin_stop + 1, 1)),
np.linspace(0, 1, 1 + bin_start - bin_stop)[:, None],
np.ones((n_bins - bin_start - 2, 1))
], axis=0)
return mask
def fft_lp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop):
g -= 1 / (bin_stop - bin_start)
spec[:, b, :] = g * spec[:, b, :]
spec[:, bin_stop:, :] *= 0
return spec
def fft_hp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop, -1):
g -= 1 / (bin_start - bin_stop)
spec[:, b, :] = g * spec[:, b, :]
spec[:, 0:bin_stop+1, :] *= 0
return spec
def spectrogram_to_wave_old(spec, hop_length=1024):
if spec.ndim == 2:
wave = librosa.istft(spec, hop_length=hop_length)
elif spec.ndim == 3:
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def wave_to_spectrogram_old(wave, hop_length, n_fft):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def mirroring(a, spec_m, input_high_end, mp):
if 'mirroring' == a:
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
mirror = mirror * np.exp(1.j * np.angle(input_high_end))
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
if 'mirroring2' == a:
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
mi = np.multiply(mirror, input_high_end * 1.7)
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
aggr = aggressiveness['value'] * 2
if aggr != 0:
if is_non_accom_stem:
aggr = 1 - aggr
aggr = [aggr, aggr]
if aggressiveness['aggr_correction'] is not None:
aggr[0] += aggressiveness['aggr_correction']['left']
aggr[1] += aggressiveness['aggr_correction']['right']
for ch in range(2):
mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3)
mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch])
return mask
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl)
wave_right = librosa.istft(spec_right, hop_length=hl)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def spec_effects(wave, algorithm='Default', value=None):
spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)]
if algorithm == 'Min_Mag':
v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m,1024)
elif algorithm == 'Max_Mag':
v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m,1024)
elif algorithm == 'Default':
wave = (wave[1] * value) + (wave[0] * (1-value))
elif algorithm == 'Invert_p':
X_mag = np.abs(spec[0])
y_mag = np.abs(spec[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
wave = istft(v_spec,1024)
return wave
def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
if wave.ndim == 1:
wave = np.asfortranarray([wave,wave])
return wave
def wave_to_spectrogram_no_mp(wave):
spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
if spec.ndim == 1:
spec = np.asfortranarray([spec,spec])
return spec
def invert_audio(specs, invert_p=True):
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
if invert_p:
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
else:
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
v_spec = specs[0] - specs[1]
return v_spec
def invert_stem(mixture, stem):
mixture = wave_to_spectrogram_no_mp(mixture)
stem = wave_to_spectrogram_no_mp(stem)
output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))
return -output.T
def ensembling(a, inputs, is_wavs=False):
for i in range(1, len(inputs)):
if i == 1:
input = inputs[0]
if is_wavs:
ln = min([input.shape[1], inputs[i].shape[1]])
input = input[:,:ln]
inputs[i] = inputs[i][:,:ln]
else:
ln = min([input.shape[2], inputs[i].shape[2]])
input = input[:,:,:ln]
inputs[i] = inputs[i][:,:,:ln]
if MIN_SPEC == a:
input = np.where(np.abs(inputs[i]) <= np.abs(input), inputs[i], input)
if MAX_SPEC == a:
input = np.where(np.abs(inputs[i]) >= np.abs(input), inputs[i], input)
#linear_ensemble
#input = ensemble_wav(inputs, split_size=1)
return input
def ensemble_for_align(waves):
specs = []
for wav in waves:
spec = wave_to_spectrogram_no_mp(wav.T)
specs.append(spec)
wav_aligned = spectrogram_to_wave_no_mp(ensembling(MIN_SPEC, specs)).T
wav_aligned = match_array_shapes(wav_aligned, waves[1], is_swap=True)
return wav_aligned
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path, is_wave=False, is_array=False):
wavs_ = []
if algorithm == AVERAGE:
output = average_audio(audio_input)
samplerate = 44100
else:
specs = []
for i in range(len(audio_input)):
wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
wavs_.append(wave)
spec = wave if is_wave else wave_to_spectrogram_no_mp(wave)
specs.append(spec)
wave_shapes = [w.shape[1] for w in wavs_]
target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
if is_wave:
output = ensembling(algorithm, specs, is_wavs=True)
else:
output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
output = to_shape(output, target_shape.shape)
sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)
def to_shape(x, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
pad_value = (target_dim - x_dim)
pad_tuple = ((0, pad_value))
padding_list.append(pad_tuple)
return np.pad(x, tuple(padding_list), mode='constant')
def to_shape_minimize(x: np.ndarray, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
pad_value = (target_dim - x_dim)
pad_tuple = ((0, pad_value))
padding_list.append(pad_tuple)
return np.pad(x, tuple(padding_list), mode='constant')
def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024):
"""
Detect silence at the beginning of an audio signal.
:param audio: np.array, audio signal
:param sr: int, sample rate
:param silence_threshold: float, magnitude threshold below which is considered silence
:param frame_length: int, the number of samples to consider for each check
:return: float, duration of the leading silence in milliseconds
"""
if len(audio.shape) == 2:
# If stereo, pick the channel with more energy to determine the silence
channel = np.argmax(np.sum(np.abs(audio), axis=1))
audio = audio[channel]
for i in range(0, len(audio), frame_length):
if np.max(np.abs(audio[i:i+frame_length])) > silence_threshold:
return (i / sr) * 1000
return (len(audio) / sr) * 1000
def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024):
"""
Adjust the leading silence of the target_audio to match the leading silence of the reference_audio.
:param target_audio: np.array, audio signal that will have its silence adjusted
:param reference_audio: np.array, audio signal used as a reference
:param sr: int, sample rate
:param silence_threshold: float, magnitude threshold below which is considered silence
:param frame_length: int, the number of samples to consider for each check
:return: np.array, target_audio adjusted to have the same leading silence as reference_audio
"""
def find_silence_end(audio):
if len(audio.shape) == 2:
# If stereo, pick the channel with more energy to determine the silence
channel = np.argmax(np.sum(np.abs(audio), axis=1))
audio_mono = audio[channel]
else:
audio_mono = audio
for i in range(0, len(audio_mono), frame_length):
if np.max(np.abs(audio_mono[i:i+frame_length])) > silence_threshold:
return i
return len(audio_mono)
ref_silence_end = find_silence_end(reference_audio)
target_silence_end = find_silence_end(target_audio)
silence_difference = ref_silence_end - target_silence_end
try:
ref_silence_end_p = (ref_silence_end / 44100) * 1000
target_silence_end_p = (target_silence_end / 44100) * 1000
silence_difference_p = ref_silence_end_p - target_silence_end_p
print("silence_difference: ", silence_difference_p)
except Exception as e:
pass
if silence_difference > 0: # Add silence to target_audio
if len(target_audio.shape) == 2: # stereo
silence_to_add = np.zeros((target_audio.shape[0], silence_difference))
else: # mono
silence_to_add = np.zeros(silence_difference)
return np.hstack((silence_to_add, target_audio))
elif silence_difference < 0: # Remove silence from target_audio
if len(target_audio.shape) == 2: # stereo
return target_audio[:, -silence_difference:]
else: # mono
return target_audio[-silence_difference:]
else: # No adjustment needed
return target_audio
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray, is_swap=False):
if is_swap:
array_1, array_2 = array_1.T, array_2.T
#print("before", array_1.shape, array_2.shape)
if array_1.shape[1] > array_2.shape[1]:
array_1 = array_1[:,:array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
#print("after", array_1.shape, array_2.shape)
if is_swap:
array_1, array_2 = array_1.T, array_2.T
return array_1
def match_mono_array_shapes(array_1: np.ndarray, array_2: np.ndarray):
if len(array_1) > len(array_2):
array_1 = array_1[:len(array_2)]
elif len(array_1) < len(array_2):
padding = len(array_2) - len(array_1)
array_1 = np.pad(array_1, (0, padding), 'constant', constant_values=0)
return array_1
def change_pitch_semitones(y, sr, semitone_shift):
factor = 2 ** (semitone_shift / 12) # Convert semitone shift to factor for resampling
y_pitch_tuned = []
for y_channel in y:
y_pitch_tuned.append(librosa.resample(y_channel, sr, sr*factor, res_type=wav_resolution_float_resampling))
y_pitch_tuned = np.array(y_pitch_tuned)
new_sr = sr * factor
return y_pitch_tuned, new_sr
def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False, is_time_correction=True):
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1:
wav = np.asfortranarray([wav,wav])
if not is_time_correction:
wav_mix = change_pitch_semitones(wav, 44100, semitone_shift=-rate)[0]
else:
if is_pitch:
wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None)
wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None)
else:
wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None)
wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None)
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
wav_1 = to_shape(wav_1, wav_2.shape)
wav_mix = np.asfortranarray([wav_1, wav_2])
sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
save_format(export_path)
def average_audio(audio):
waves = []
wave_shapes = []
final_waves = []
for i in range(len(audio)):
wave = librosa.load(audio[i], sr=44100, mono=False)
waves.append(wave[0])
wave_shapes.append(wave[0].shape[1])
wave_shapes_index = wave_shapes.index(max(wave_shapes))
target_shape = waves[wave_shapes_index]
waves.pop(wave_shapes_index)
final_waves.append(target_shape)
for n_array in waves:
wav_target = to_shape(n_array, target_shape.shape)
final_waves.append(wav_target)
waves = sum(final_waves)
waves = waves/len(audio)
return waves
def average_dual_sources(wav_1, wav_2, value):
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
wav_1 = to_shape(wav_1, wav_2.shape)
wave = (wav_1 * value) + (wav_2 * (1-value))
return wave
def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_2 = wav_2[:,:ln]
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_1 = wav_1[:,:ln]
wav_2 = wav_2[:,:ln]
return wav_2
def reshape_sources_ref(wav_1_shape, wav_2: np.ndarray):
if wav_1_shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1_shape)
return wav_2
def combine_arrarys(audio_sources, is_swap=False):
source = np.zeros_like(max(audio_sources, key=np.size))
for v in audio_sources:
v = match_array_shapes(v, source, is_swap=is_swap)
source += v
return source
def combine_audio(paths: list, audio_file_base=None, wav_type_set='FLOAT', save_format=None):
source = combine_arrarys([load_audio(i) for i in paths])
save_path = f"{audio_file_base}_combined.wav"
sf.write(save_path, source.T, 44100, subtype=wav_type_set)
save_format(save_path)
def reduce_mix_bv(inst_source, voc_source, reduction_rate=0.9):
# Reduce the volume
inst_source = inst_source * (1 - reduction_rate)
mix_reduced = combine_arrarys([inst_source, voc_source], is_swap=True)
return mix_reduced
def organize_inputs(inputs):
input_list = {
"target":None,
"reference":None,
"reverb":None,
"inst":None
}
for i in inputs:
if i.endswith("_(Vocals).wav"):
input_list["reference"] = i
elif "_RVC_" in i:
input_list["target"] = i
elif i.endswith("reverbed_stem.wav"):
input_list["reverb"] = i
elif i.endswith("_(Instrumental).wav"):
input_list["inst"] = i
return input_list
def check_if_phase_inverted(wav1, wav2, is_mono=False):
# Load the audio files
if not is_mono:
wav1 = np.mean(wav1, axis=0)
wav2 = np.mean(wav2, axis=0)
# Compute the correlation
correlation = np.corrcoef(wav1[:1000], wav2[:1000])
return correlation[0,1] < 0
def align_audio(file1,
file2,
file2_aligned,
file_subtracted,
wav_type_set,
is_save_aligned,
command_Text,
save_format,
align_window:list,
align_intro_val:list,
db_analysis:tuple,
set_progress_bar,
phase_option,
phase_shifts,
is_match_silence,
is_spec_match):
global progress_value
progress_value = 0
is_mono = False
def get_diff(a, b):
corr = np.correlate(a, b, "full")
diff = corr.argmax() - (b.shape[0] - 1)
return diff
def progress_bar(length):
global progress_value
progress_value += 1
if (0.90/length*progress_value) >= 0.9:
length = progress_value + 1
set_progress_bar(0.1, (0.9/length*progress_value))
# read tracks
if file1.endswith(".mp3") and is_macos:
length1 = rerun_mp3(file1)
wav1, sr1 = librosa.load(file1, duration=length1, sr=44100, mono=False)
else:
wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
if file2.endswith(".mp3") and is_macos:
length2 = rerun_mp3(file2)
wav2, sr2 = librosa.load(file2, duration=length2, sr=44100, mono=False)
else:
wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
if wav1.ndim == 1 and wav2.ndim == 1:
is_mono = True
elif wav1.ndim == 1:
wav1 = np.asfortranarray([wav1,wav1])
elif wav2.ndim == 1:
wav2 = np.asfortranarray([wav2,wav2])
# Check if phase is inverted
if phase_option == AUTO_PHASE:
if check_if_phase_inverted(wav1, wav2, is_mono=is_mono):
wav2 = -wav2
elif phase_option == POSITIVE_PHASE:
wav2 = +wav2
elif phase_option == NEGATIVE_PHASE:
wav2 = -wav2
if is_match_silence:
wav2 = adjust_leading_silence(wav2, wav1)
wav1_length = int(librosa.get_duration(y=wav1, sr=44100))
wav2_length = int(librosa.get_duration(y=wav2, sr=44100))
if not is_mono:
wav1 = wav1.transpose()
wav2 = wav2.transpose()
wav2_org = wav2.copy()
command_Text("Processing files... \n")
seconds_length = min(wav1_length, wav2_length)
wav2_aligned_sources = []
for sec_len in align_intro_val:
# pick a position at 1 second in and get diff
sec_seg = 1 if sec_len == 1 else int(seconds_length // sec_len)
index = sr1*sec_seg # 1 second in, assuming sr1 = sr2 = 44100
if is_mono:
samp1, samp2 = wav1[index : index + sr1], wav2[index : index + sr1]
diff = get_diff(samp1, samp2)
#print(f"Estimated difference: {diff}\n")
else:
index = sr1*sec_seg # 1 second in, assuming sr1 = sr2 = 44100
samp1, samp2 = wav1[index : index + sr1, 0], wav2[index : index + sr1, 0]
samp1_r, samp2_r = wav1[index : index + sr1, 1], wav2[index : index + sr1, 1]
diff, diff_r = get_diff(samp1, samp2), get_diff(samp1_r, samp2_r)
#print(f"Estimated difference Left Channel: {diff}\nEstimated difference Right Channel: {diff_r}\n")
# make aligned track 2
if diff > 0:
zeros_to_append = np.zeros(diff) if is_mono else np.zeros((diff, 2))
wav2_aligned = np.append(zeros_to_append, wav2_org, axis=0)
elif diff < 0:
wav2_aligned = wav2_org[-diff:]
else:
wav2_aligned = wav2_org
#command_Text(f"Audio files already aligned.\n")
if not any(np.array_equal(wav2_aligned, source) for source in wav2_aligned_sources):
wav2_aligned_sources.append(wav2_aligned)
#print("Unique Sources: ", len(wav2_aligned_sources))
unique_sources = len(wav2_aligned_sources)
sub_mapper_big_mapper = {}
for s in wav2_aligned_sources:
wav2_aligned = match_mono_array_shapes(s, wav1) if is_mono else match_array_shapes(s, wav1, is_swap=True)
if align_window:
wav_sub = time_correction(wav1, wav2_aligned, seconds_length, align_window=align_window, db_analysis=db_analysis, progress_bar=progress_bar, unique_sources=unique_sources, phase_shifts=phase_shifts)
wav_sub_size = np.abs(wav_sub).mean()
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
else:
wav2_aligned = wav2_aligned * np.power(10, db_analysis[0] / 20)
db_range = db_analysis[1]
for db_adjustment in db_range:
# Adjust the dB of track2
s_adjusted = wav2_aligned * (10 ** (db_adjustment / 20))
wav_sub = wav1 - s_adjusted
wav_sub_size = np.abs(wav_sub).mean()
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
#print(sub_mapper_big_mapper.keys(), min(sub_mapper_big_mapper.keys()))
sub_mapper_value_list = list(sub_mapper_big_mapper.values())
if is_spec_match and len(sub_mapper_value_list) >= 2:
#print("using spec ensemble with align")
wav_sub = ensemble_for_align(list(sub_mapper_big_mapper.values()))
else:
#print("using linear ensemble with align")
wav_sub = ensemble_wav(list(sub_mapper_big_mapper.values()))
#print(f"Mix Mean: {np.abs(wav1).mean()}\nInst Mean: {np.abs(wav2).mean()}")
#print('Final: ', np.abs(wav_sub).mean())
wav_sub = np.clip(wav_sub, -1, +1)
command_Text(f"Saving inverted track... ")
if is_save_aligned or is_spec_match:
wav1 = match_mono_array_shapes(wav1, wav_sub) if is_mono else match_array_shapes(wav1, wav_sub, is_swap=True)
wav2_aligned = wav1 - wav_sub
if is_spec_match:
if wav1.ndim == 1 and wav2.ndim == 1:
wav2_aligned = np.asfortranarray([wav2_aligned, wav2_aligned]).T
wav1 = np.asfortranarray([wav1, wav1]).T
wav2_aligned = ensemble_for_align([wav2_aligned, wav1])
wav_sub = wav1 - wav2_aligned
if is_save_aligned:
sf.write(file2_aligned, wav2_aligned, sr1, subtype=wav_type_set)
save_format(file2_aligned)
sf.write(file_subtracted, wav_sub, sr1, subtype=wav_type_set)
save_format(file_subtracted)
def phase_shift_hilbert(signal, degree):
analytic_signal = hilbert(signal)
return np.cos(np.radians(degree)) * analytic_signal.real - np.sin(np.radians(degree)) * analytic_signal.imag
def get_phase_shifted_tracks(track, phase_shift):
if phase_shift == 180:
return [track, -track]
step = phase_shift
end = 180 - (180 % step) if 180 % step == 0 else 181
phase_range = range(step, end, step)
flipped_list = [track, -track]
for i in phase_range:
flipped_list.extend([phase_shift_hilbert(track, i), phase_shift_hilbert(track, -i)])
return flipped_list
def time_correction(mix:np.ndarray, instrumental:np.ndarray, seconds_length, align_window, db_analysis, sr=44100, progress_bar=None, unique_sources=None, phase_shifts=NONE_P):
# Function to align two tracks using cross-correlation
def align_tracks(track1, track2):
# A dictionary to store each version of track2_shifted and its mean absolute value
shifted_tracks = {}
# Loop to adjust dB of track2
track2 = track2 * np.power(10, db_analysis[0] / 20)
db_range = db_analysis[1]
if phase_shifts == 190:
track2_flipped = [track2]
else:
track2_flipped = get_phase_shifted_tracks(track2, phase_shifts)
for db_adjustment in db_range:
for t in track2_flipped:
# Adjust the dB of track2
track2_adjusted = t * (10 ** (db_adjustment / 20))
corr = correlate(track1, track2_adjusted)
delay = np.argmax(np.abs(corr)) - (len(track1) - 1)
track2_shifted = np.roll(track2_adjusted, shift=delay)
# Compute the mean absolute value of track2_shifted
track2_shifted_sub = track1 - track2_shifted
mean_abs_value = np.abs(track2_shifted_sub).mean()
# Store track2_shifted and its mean absolute value in the dictionary
shifted_tracks[mean_abs_value] = track2_shifted
# Return the version of track2_shifted with the smallest mean absolute value
return shifted_tracks[min(shifted_tracks.keys())]
# Make sure the audio files have the same shape
assert mix.shape == instrumental.shape, f"Audio files must have the same shape - Mix: {mix.shape}, Inst: {instrumental.shape}"
seconds_length = seconds_length // 2
sub_mapper = {}
progress_update_interval = 120
total_iterations = 0
if len(align_window) > 2:
progress_update_interval = 320
for secs in align_window:
step = secs / 2
window_size = int(sr * secs)
step_size = int(sr * step)
if len(mix.shape) == 1:
total_mono = (len(range(0, len(mix) - window_size, step_size))//progress_update_interval)*unique_sources
total_iterations += total_mono
else:
total_stereo_ = len(range(0, len(mix[:, 0]) - window_size, step_size))*2
total_stereo = (total_stereo_//progress_update_interval) * unique_sources
total_iterations += total_stereo
#print(total_iterations)
for secs in align_window:
sub = np.zeros_like(mix)
divider = np.zeros_like(mix)
step = secs / 2
window_size = int(sr * secs)
step_size = int(sr * step)
window = np.hanning(window_size)
# For the mono case:
if len(mix.shape) == 1:
# The files are mono
counter = 0
for i in range(0, len(mix) - window_size, step_size):
counter += 1
if counter % progress_update_interval == 0:
progress_bar(total_iterations)
window_mix = mix[i:i+window_size] * window
window_instrumental = instrumental[i:i+window_size] * window
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
sub[i:i+window_size] += window_mix - window_instrumental_aligned
divider[i:i+window_size] += window
else:
# The files are stereo
counter = 0
for ch in range(mix.shape[1]):
for i in range(0, len(mix[:, ch]) - window_size, step_size):
counter += 1
if counter % progress_update_interval == 0:
progress_bar(total_iterations)
window_mix = mix[i:i+window_size, ch] * window
window_instrumental = instrumental[i:i+window_size, ch] * window
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
sub[i:i+window_size, ch] += window_mix - window_instrumental_aligned
divider[i:i+window_size, ch] += window
# Normalize the result by the overlap count
sub = np.where(divider > 1e-6, sub / divider, sub)
sub_size = np.abs(sub).mean()
sub_mapper = {**sub_mapper, **{sub_size: sub}}
#print("SUB_LEN", len(list(sub_mapper.values())))
sub = ensemble_wav(list(sub_mapper.values()), split_size=12)
return sub
def ensemble_wav(waveforms, split_size=240):
# Create a dictionary to hold the thirds of each waveform and their mean absolute values
waveform_thirds = {i: np.array_split(waveform, split_size) for i, waveform in enumerate(waveforms)}
# Initialize the final waveform
final_waveform = []
# For chunk
for third_idx in range(split_size):
# Compute the mean absolute value of each third from each waveform
means = [np.abs(waveform_thirds[i][third_idx]).mean() for i in range(len(waveforms))]
# Find the index of the waveform with the lowest mean absolute value for this third
min_index = np.argmin(means)
# Add the least noisy third to the final waveform
final_waveform.append(waveform_thirds[min_index][third_idx])
# Concatenate all the thirds to create the final waveform
final_waveform = np.concatenate(final_waveform)
return final_waveform
def ensemble_wav_min(waveforms):
for i in range(1, len(waveforms)):
if i == 1:
wave = waveforms[0]
ln = min(len(wave), len(waveforms[i]))
wave = wave[:ln]
waveforms[i] = waveforms[i][:ln]
wave = np.where(np.abs(waveforms[i]) <= np.abs(wave), waveforms[i], wave)
return wave
def align_audio_test(wav1, wav2, sr1=44100):
def get_diff(a, b):
corr = np.correlate(a, b, "full")
diff = corr.argmax() - (b.shape[0] - 1)
return diff
# read tracks
wav1 = wav1.transpose()
wav2 = wav2.transpose()
#print(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n")
wav2_org = wav2.copy()
# pick a position at 1 second in and get diff
index = sr1#*seconds_length # 1 second in, assuming sr1 = sr2 = 44100
samp1 = wav1[index : index + sr1, 0] # currently use left channel
samp2 = wav2[index : index + sr1, 0]
diff = get_diff(samp1, samp2)
# make aligned track 2
if diff > 0:
wav2_aligned = np.append(np.zeros((diff, 1)), wav2_org, axis=0)
elif diff < 0:
wav2_aligned = wav2_org[-diff:]
else:
wav2_aligned = wav2_org
return wav2_aligned
def load_audio(audio_file):
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1:
wav = np.asfortranarray([wav,wav])
return wav
def rerun_mp3(audio_file):
with audioread.audio_open(audio_file) as f:
track_length = int(f.duration)
return track_length