Spaces:
Running
Running
# Copyright (c) 2019-present, Meta, Inc. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# First author is Simon Rouard. | |
import random | |
import typing as tp | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import math | |
from einops import rearrange | |
def create_sin_embedding( | |
length: int, dim: int, shift: int = 0, device="cpu", max_period=10000 | |
): | |
# We aim for TBC format | |
assert dim % 2 == 0 | |
pos = shift + torch.arange(length, device=device).view(-1, 1, 1) | |
half_dim = dim // 2 | |
adim = torch.arange(dim // 2, device=device).view(1, 1, -1) | |
phase = pos / (max_period ** (adim / (half_dim - 1))) | |
return torch.cat( | |
[ | |
torch.cos(phase), | |
torch.sin(phase), | |
], | |
dim=-1, | |
) | |
def create_2d_sin_embedding(d_model, height, width, device="cpu", max_period=10000): | |
""" | |
:param d_model: dimension of the model | |
:param height: height of the positions | |
:param width: width of the positions | |
:return: d_model*height*width position matrix | |
""" | |
if d_model % 4 != 0: | |
raise ValueError( | |
"Cannot use sin/cos positional encoding with " | |
"odd dimension (got dim={:d})".format(d_model) | |
) | |
pe = torch.zeros(d_model, height, width) | |
# Each dimension use half of d_model | |
d_model = int(d_model / 2) | |
div_term = torch.exp( | |
torch.arange(0.0, d_model, 2) * -(math.log(max_period) / d_model) | |
) | |
pos_w = torch.arange(0.0, width).unsqueeze(1) | |
pos_h = torch.arange(0.0, height).unsqueeze(1) | |
pe[0:d_model:2, :, :] = ( | |
torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1) | |
) | |
pe[1:d_model:2, :, :] = ( | |
torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1) | |
) | |
pe[d_model::2, :, :] = ( | |
torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width) | |
) | |
pe[d_model + 1:: 2, :, :] = ( | |
torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width) | |
) | |
return pe[None, :].to(device) | |
def create_sin_embedding_cape( | |
length: int, | |
dim: int, | |
batch_size: int, | |
mean_normalize: bool, | |
augment: bool, # True during training | |
max_global_shift: float = 0.0, # delta max | |
max_local_shift: float = 0.0, # epsilon max | |
max_scale: float = 1.0, | |
device: str = "cpu", | |
max_period: float = 10000.0, | |
): | |
# We aim for TBC format | |
assert dim % 2 == 0 | |
pos = 1.0 * torch.arange(length).view(-1, 1, 1) # (length, 1, 1) | |
pos = pos.repeat(1, batch_size, 1) # (length, batch_size, 1) | |
if mean_normalize: | |
pos -= torch.nanmean(pos, dim=0, keepdim=True) | |
if augment: | |
delta = np.random.uniform( | |
-max_global_shift, +max_global_shift, size=[1, batch_size, 1] | |
) | |
delta_local = np.random.uniform( | |
-max_local_shift, +max_local_shift, size=[length, batch_size, 1] | |
) | |
log_lambdas = np.random.uniform( | |
-np.log(max_scale), +np.log(max_scale), size=[1, batch_size, 1] | |
) | |
pos = (pos + delta + delta_local) * np.exp(log_lambdas) | |
pos = pos.to(device) | |
half_dim = dim // 2 | |
adim = torch.arange(dim // 2, device=device).view(1, 1, -1) | |
phase = pos / (max_period ** (adim / (half_dim - 1))) | |
return torch.cat( | |
[ | |
torch.cos(phase), | |
torch.sin(phase), | |
], | |
dim=-1, | |
).float() | |
def get_causal_mask(length): | |
pos = torch.arange(length) | |
return pos > pos[:, None] | |
def get_elementary_mask( | |
T1, | |
T2, | |
mask_type, | |
sparse_attn_window, | |
global_window, | |
mask_random_seed, | |
sparsity, | |
device, | |
): | |
""" | |
When the input of the Decoder has length T1 and the output T2 | |
The mask matrix has shape (T2, T1) | |
""" | |
assert mask_type in ["diag", "jmask", "random", "global"] | |
if mask_type == "global": | |
mask = torch.zeros(T2, T1, dtype=torch.bool) | |
mask[:, :global_window] = True | |
line_window = int(global_window * T2 / T1) | |
mask[:line_window, :] = True | |
if mask_type == "diag": | |
mask = torch.zeros(T2, T1, dtype=torch.bool) | |
rows = torch.arange(T2)[:, None] | |
cols = ( | |
(T1 / T2 * rows + torch.arange(-sparse_attn_window, sparse_attn_window + 1)) | |
.long() | |
.clamp(0, T1 - 1) | |
) | |
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols)) | |
elif mask_type == "jmask": | |
mask = torch.zeros(T2 + 2, T1 + 2, dtype=torch.bool) | |
rows = torch.arange(T2 + 2)[:, None] | |
t = torch.arange(0, int((2 * T1) ** 0.5 + 1)) | |
t = (t * (t + 1) / 2).int() | |
t = torch.cat([-t.flip(0)[:-1], t]) | |
cols = (T1 / T2 * rows + t).long().clamp(0, T1 + 1) | |
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols)) | |
mask = mask[1:-1, 1:-1] | |
elif mask_type == "random": | |
gene = torch.Generator(device=device) | |
gene.manual_seed(mask_random_seed) | |
mask = ( | |
torch.rand(T1 * T2, generator=gene, device=device).reshape(T2, T1) | |
> sparsity | |
) | |
mask = mask.to(device) | |
return mask | |
def get_mask( | |
T1, | |
T2, | |
mask_type, | |
sparse_attn_window, | |
global_window, | |
mask_random_seed, | |
sparsity, | |
device, | |
): | |
""" | |
Return a SparseCSRTensor mask that is a combination of elementary masks | |
mask_type can be a combination of multiple masks: for instance "diag_jmask_random" | |
""" | |
from xformers.sparse import SparseCSRTensor | |
# create a list | |
mask_types = mask_type.split("_") | |
all_masks = [ | |
get_elementary_mask( | |
T1, | |
T2, | |
mask, | |
sparse_attn_window, | |
global_window, | |
mask_random_seed, | |
sparsity, | |
device, | |
) | |
for mask in mask_types | |
] | |
final_mask = torch.stack(all_masks).sum(axis=0) > 0 | |
return SparseCSRTensor.from_dense(final_mask[None]) | |
class ScaledEmbedding(nn.Module): | |
def __init__( | |
self, | |
num_embeddings: int, | |
embedding_dim: int, | |
scale: float = 1.0, | |
boost: float = 3.0, | |
): | |
super().__init__() | |
self.embedding = nn.Embedding(num_embeddings, embedding_dim) | |
self.embedding.weight.data *= scale / boost | |
self.boost = boost | |
def weight(self): | |
return self.embedding.weight * self.boost | |
def forward(self, x): | |
return self.embedding(x) * self.boost | |
class LayerScale(nn.Module): | |
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf). | |
This rescales diagonaly residual outputs close to 0 initially, then learnt. | |
""" | |
def __init__(self, channels: int, init: float = 0, channel_last=False): | |
""" | |
channel_last = False corresponds to (B, C, T) tensors | |
channel_last = True corresponds to (T, B, C) tensors | |
""" | |
super().__init__() | |
self.channel_last = channel_last | |
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True)) | |
self.scale.data[:] = init | |
def forward(self, x): | |
if self.channel_last: | |
return self.scale * x | |
else: | |
return self.scale[:, None] * x | |
class MyGroupNorm(nn.GroupNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, x): | |
""" | |
x: (B, T, C) | |
if num_groups=1: Normalisation on all T and C together for each B | |
""" | |
x = x.transpose(1, 2) | |
return super().forward(x).transpose(1, 2) | |
class MyTransformerEncoderLayer(nn.TransformerEncoderLayer): | |
def __init__( | |
self, | |
d_model, | |
nhead, | |
dim_feedforward=2048, | |
dropout=0.1, | |
activation=F.relu, | |
group_norm=0, | |
norm_first=False, | |
norm_out=False, | |
layer_norm_eps=1e-5, | |
layer_scale=False, | |
init_values=1e-4, | |
device=None, | |
dtype=None, | |
sparse=False, | |
mask_type="diag", | |
mask_random_seed=42, | |
sparse_attn_window=500, | |
global_window=50, | |
auto_sparsity=False, | |
sparsity=0.95, | |
batch_first=False, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__( | |
d_model=d_model, | |
nhead=nhead, | |
dim_feedforward=dim_feedforward, | |
dropout=dropout, | |
activation=activation, | |
layer_norm_eps=layer_norm_eps, | |
batch_first=batch_first, | |
norm_first=norm_first, | |
device=device, | |
dtype=dtype, | |
) | |
self.sparse = sparse | |
self.auto_sparsity = auto_sparsity | |
if sparse: | |
if not auto_sparsity: | |
self.mask_type = mask_type | |
self.sparse_attn_window = sparse_attn_window | |
self.global_window = global_window | |
self.sparsity = sparsity | |
if group_norm: | |
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs) | |
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs) | |
self.norm_out = None | |
if self.norm_first & norm_out: | |
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model) | |
self.gamma_1 = ( | |
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity() | |
) | |
self.gamma_2 = ( | |
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity() | |
) | |
if sparse: | |
self.self_attn = MultiheadAttention( | |
d_model, nhead, dropout=dropout, batch_first=batch_first, | |
auto_sparsity=sparsity if auto_sparsity else 0, | |
) | |
self.__setattr__("src_mask", torch.zeros(1, 1)) | |
self.mask_random_seed = mask_random_seed | |
def forward(self, src, src_mask=None, src_key_padding_mask=None): | |
""" | |
if batch_first = False, src shape is (T, B, C) | |
the case where batch_first=True is not covered | |
""" | |
device = src.device | |
x = src | |
T, B, C = x.shape | |
if self.sparse and not self.auto_sparsity: | |
assert src_mask is None | |
src_mask = self.src_mask | |
if src_mask.shape[-1] != T: | |
src_mask = get_mask( | |
T, | |
T, | |
self.mask_type, | |
self.sparse_attn_window, | |
self.global_window, | |
self.mask_random_seed, | |
self.sparsity, | |
device, | |
) | |
self.__setattr__("src_mask", src_mask) | |
if self.norm_first: | |
x = x + self.gamma_1( | |
self._sa_block(self.norm1(x), src_mask, src_key_padding_mask) | |
) | |
x = x + self.gamma_2(self._ff_block(self.norm2(x))) | |
if self.norm_out: | |
x = self.norm_out(x) | |
else: | |
x = self.norm1( | |
x + self.gamma_1(self._sa_block(x, src_mask, src_key_padding_mask)) | |
) | |
x = self.norm2(x + self.gamma_2(self._ff_block(x))) | |
return x | |
class CrossTransformerEncoderLayer(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
nhead: int, | |
dim_feedforward: int = 2048, | |
dropout: float = 0.1, | |
activation=F.relu, | |
layer_norm_eps: float = 1e-5, | |
layer_scale: bool = False, | |
init_values: float = 1e-4, | |
norm_first: bool = False, | |
group_norm: bool = False, | |
norm_out: bool = False, | |
sparse=False, | |
mask_type="diag", | |
mask_random_seed=42, | |
sparse_attn_window=500, | |
global_window=50, | |
sparsity=0.95, | |
auto_sparsity=None, | |
device=None, | |
dtype=None, | |
batch_first=False, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.sparse = sparse | |
self.auto_sparsity = auto_sparsity | |
if sparse: | |
if not auto_sparsity: | |
self.mask_type = mask_type | |
self.sparse_attn_window = sparse_attn_window | |
self.global_window = global_window | |
self.sparsity = sparsity | |
self.cross_attn: nn.Module | |
self.cross_attn = nn.MultiheadAttention( | |
d_model, nhead, dropout=dropout, batch_first=batch_first) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs) | |
self.norm_first = norm_first | |
self.norm1: nn.Module | |
self.norm2: nn.Module | |
self.norm3: nn.Module | |
if group_norm: | |
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs) | |
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs) | |
self.norm3 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs) | |
else: | |
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) | |
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) | |
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) | |
self.norm_out = None | |
if self.norm_first & norm_out: | |
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model) | |
self.gamma_1 = ( | |
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity() | |
) | |
self.gamma_2 = ( | |
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity() | |
) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
# Legacy string support for activation function. | |
if isinstance(activation, str): | |
self.activation = self._get_activation_fn(activation) | |
else: | |
self.activation = activation | |
if sparse: | |
self.cross_attn = MultiheadAttention( | |
d_model, nhead, dropout=dropout, batch_first=batch_first, | |
auto_sparsity=sparsity if auto_sparsity else 0) | |
if not auto_sparsity: | |
self.__setattr__("mask", torch.zeros(1, 1)) | |
self.mask_random_seed = mask_random_seed | |
def forward(self, q, k, mask=None): | |
""" | |
Args: | |
q: tensor of shape (T, B, C) | |
k: tensor of shape (S, B, C) | |
mask: tensor of shape (T, S) | |
""" | |
device = q.device | |
T, B, C = q.shape | |
S, B, C = k.shape | |
if self.sparse and not self.auto_sparsity: | |
assert mask is None | |
mask = self.mask | |
if mask.shape[-1] != S or mask.shape[-2] != T: | |
mask = get_mask( | |
S, | |
T, | |
self.mask_type, | |
self.sparse_attn_window, | |
self.global_window, | |
self.mask_random_seed, | |
self.sparsity, | |
device, | |
) | |
self.__setattr__("mask", mask) | |
if self.norm_first: | |
x = q + self.gamma_1(self._ca_block(self.norm1(q), self.norm2(k), mask)) | |
x = x + self.gamma_2(self._ff_block(self.norm3(x))) | |
if self.norm_out: | |
x = self.norm_out(x) | |
else: | |
x = self.norm1(q + self.gamma_1(self._ca_block(q, k, mask))) | |
x = self.norm2(x + self.gamma_2(self._ff_block(x))) | |
return x | |
# self-attention block | |
def _ca_block(self, q, k, attn_mask=None): | |
x = self.cross_attn(q, k, k, attn_mask=attn_mask, need_weights=False)[0] | |
return self.dropout1(x) | |
# feed forward block | |
def _ff_block(self, x): | |
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
return self.dropout2(x) | |
def _get_activation_fn(self, activation): | |
if activation == "relu": | |
return F.relu | |
elif activation == "gelu": | |
return F.gelu | |
raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) | |
# ----------------- MULTI-BLOCKS MODELS: ----------------------- | |
class CrossTransformerEncoder(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
emb: str = "sin", | |
hidden_scale: float = 4.0, | |
num_heads: int = 8, | |
num_layers: int = 6, | |
cross_first: bool = False, | |
dropout: float = 0.0, | |
max_positions: int = 1000, | |
norm_in: bool = True, | |
norm_in_group: bool = False, | |
group_norm: int = False, | |
norm_first: bool = False, | |
norm_out: bool = False, | |
max_period: float = 10000.0, | |
weight_decay: float = 0.0, | |
lr: tp.Optional[float] = None, | |
layer_scale: bool = False, | |
gelu: bool = True, | |
sin_random_shift: int = 0, | |
weight_pos_embed: float = 1.0, | |
cape_mean_normalize: bool = True, | |
cape_augment: bool = True, | |
cape_glob_loc_scale: list = [5000.0, 1.0, 1.4], | |
sparse_self_attn: bool = False, | |
sparse_cross_attn: bool = False, | |
mask_type: str = "diag", | |
mask_random_seed: int = 42, | |
sparse_attn_window: int = 500, | |
global_window: int = 50, | |
auto_sparsity: bool = False, | |
sparsity: float = 0.95, | |
): | |
super().__init__() | |
""" | |
""" | |
assert dim % num_heads == 0 | |
hidden_dim = int(dim * hidden_scale) | |
self.num_layers = num_layers | |
# classic parity = 1 means that if idx%2 == 1 there is a | |
# classical encoder else there is a cross encoder | |
self.classic_parity = 1 if cross_first else 0 | |
self.emb = emb | |
self.max_period = max_period | |
self.weight_decay = weight_decay | |
self.weight_pos_embed = weight_pos_embed | |
self.sin_random_shift = sin_random_shift | |
if emb == "cape": | |
self.cape_mean_normalize = cape_mean_normalize | |
self.cape_augment = cape_augment | |
self.cape_glob_loc_scale = cape_glob_loc_scale | |
if emb == "scaled": | |
self.position_embeddings = ScaledEmbedding(max_positions, dim, scale=0.2) | |
self.lr = lr | |
activation: tp.Any = F.gelu if gelu else F.relu | |
self.norm_in: nn.Module | |
self.norm_in_t: nn.Module | |
if norm_in: | |
self.norm_in = nn.LayerNorm(dim) | |
self.norm_in_t = nn.LayerNorm(dim) | |
elif norm_in_group: | |
self.norm_in = MyGroupNorm(int(norm_in_group), dim) | |
self.norm_in_t = MyGroupNorm(int(norm_in_group), dim) | |
else: | |
self.norm_in = nn.Identity() | |
self.norm_in_t = nn.Identity() | |
# spectrogram layers | |
self.layers = nn.ModuleList() | |
# temporal layers | |
self.layers_t = nn.ModuleList() | |
kwargs_common = { | |
"d_model": dim, | |
"nhead": num_heads, | |
"dim_feedforward": hidden_dim, | |
"dropout": dropout, | |
"activation": activation, | |
"group_norm": group_norm, | |
"norm_first": norm_first, | |
"norm_out": norm_out, | |
"layer_scale": layer_scale, | |
"mask_type": mask_type, | |
"mask_random_seed": mask_random_seed, | |
"sparse_attn_window": sparse_attn_window, | |
"global_window": global_window, | |
"sparsity": sparsity, | |
"auto_sparsity": auto_sparsity, | |
"batch_first": True, | |
} | |
kwargs_classic_encoder = dict(kwargs_common) | |
kwargs_classic_encoder.update({ | |
"sparse": sparse_self_attn, | |
}) | |
kwargs_cross_encoder = dict(kwargs_common) | |
kwargs_cross_encoder.update({ | |
"sparse": sparse_cross_attn, | |
}) | |
for idx in range(num_layers): | |
if idx % 2 == self.classic_parity: | |
self.layers.append(MyTransformerEncoderLayer(**kwargs_classic_encoder)) | |
self.layers_t.append( | |
MyTransformerEncoderLayer(**kwargs_classic_encoder) | |
) | |
else: | |
self.layers.append(CrossTransformerEncoderLayer(**kwargs_cross_encoder)) | |
self.layers_t.append( | |
CrossTransformerEncoderLayer(**kwargs_cross_encoder) | |
) | |
def forward(self, x, xt): | |
B, C, Fr, T1 = x.shape | |
pos_emb_2d = create_2d_sin_embedding( | |
C, Fr, T1, x.device, self.max_period | |
) # (1, C, Fr, T1) | |
pos_emb_2d = rearrange(pos_emb_2d, "b c fr t1 -> b (t1 fr) c") | |
x = rearrange(x, "b c fr t1 -> b (t1 fr) c") | |
x = self.norm_in(x) | |
x = x + self.weight_pos_embed * pos_emb_2d | |
B, C, T2 = xt.shape | |
xt = rearrange(xt, "b c t2 -> b t2 c") # now T2, B, C | |
pos_emb = self._get_pos_embedding(T2, B, C, x.device) | |
pos_emb = rearrange(pos_emb, "t2 b c -> b t2 c") | |
xt = self.norm_in_t(xt) | |
xt = xt + self.weight_pos_embed * pos_emb | |
for idx in range(self.num_layers): | |
if idx % 2 == self.classic_parity: | |
x = self.layers[idx](x) | |
xt = self.layers_t[idx](xt) | |
else: | |
old_x = x | |
x = self.layers[idx](x, xt) | |
xt = self.layers_t[idx](xt, old_x) | |
x = rearrange(x, "b (t1 fr) c -> b c fr t1", t1=T1) | |
xt = rearrange(xt, "b t2 c -> b c t2") | |
return x, xt | |
def _get_pos_embedding(self, T, B, C, device): | |
if self.emb == "sin": | |
shift = random.randrange(self.sin_random_shift + 1) | |
pos_emb = create_sin_embedding( | |
T, C, shift=shift, device=device, max_period=self.max_period | |
) | |
elif self.emb == "cape": | |
if self.training: | |
pos_emb = create_sin_embedding_cape( | |
T, | |
C, | |
B, | |
device=device, | |
max_period=self.max_period, | |
mean_normalize=self.cape_mean_normalize, | |
augment=self.cape_augment, | |
max_global_shift=self.cape_glob_loc_scale[0], | |
max_local_shift=self.cape_glob_loc_scale[1], | |
max_scale=self.cape_glob_loc_scale[2], | |
) | |
else: | |
pos_emb = create_sin_embedding_cape( | |
T, | |
C, | |
B, | |
device=device, | |
max_period=self.max_period, | |
mean_normalize=self.cape_mean_normalize, | |
augment=False, | |
) | |
elif self.emb == "scaled": | |
pos = torch.arange(T, device=device) | |
pos_emb = self.position_embeddings(pos)[:, None] | |
return pos_emb | |
def make_optim_group(self): | |
group = {"params": list(self.parameters()), "weight_decay": self.weight_decay} | |
if self.lr is not None: | |
group["lr"] = self.lr | |
return group | |
# Attention Modules | |
class MultiheadAttention(nn.Module): | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
dropout=0.0, | |
bias=True, | |
add_bias_kv=False, | |
add_zero_attn=False, | |
kdim=None, | |
vdim=None, | |
batch_first=False, | |
auto_sparsity=None, | |
): | |
super().__init__() | |
assert auto_sparsity is not None, "sanity check" | |
self.num_heads = num_heads | |
self.q = torch.nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.k = torch.nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v = torch.nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.attn_drop = torch.nn.Dropout(dropout) | |
self.proj = torch.nn.Linear(embed_dim, embed_dim, bias) | |
self.proj_drop = torch.nn.Dropout(dropout) | |
self.batch_first = batch_first | |
self.auto_sparsity = auto_sparsity | |
def forward( | |
self, | |
query, | |
key, | |
value, | |
key_padding_mask=None, | |
need_weights=True, | |
attn_mask=None, | |
average_attn_weights=True, | |
): | |
if not self.batch_first: # N, B, C | |
query = query.permute(1, 0, 2) # B, N_q, C | |
key = key.permute(1, 0, 2) # B, N_k, C | |
value = value.permute(1, 0, 2) # B, N_k, C | |
B, N_q, C = query.shape | |
B, N_k, C = key.shape | |
q = ( | |
self.q(query) | |
.reshape(B, N_q, self.num_heads, C // self.num_heads) | |
.permute(0, 2, 1, 3) | |
) | |
q = q.flatten(0, 1) | |
k = ( | |
self.k(key) | |
.reshape(B, N_k, self.num_heads, C // self.num_heads) | |
.permute(0, 2, 1, 3) | |
) | |
k = k.flatten(0, 1) | |
v = ( | |
self.v(value) | |
.reshape(B, N_k, self.num_heads, C // self.num_heads) | |
.permute(0, 2, 1, 3) | |
) | |
v = v.flatten(0, 1) | |
if self.auto_sparsity: | |
assert attn_mask is None | |
x = dynamic_sparse_attention(q, k, v, sparsity=self.auto_sparsity) | |
else: | |
x = scaled_dot_product_attention(q, k, v, attn_mask, dropout=self.attn_drop) | |
x = x.reshape(B, self.num_heads, N_q, C // self.num_heads) | |
x = x.transpose(1, 2).reshape(B, N_q, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
if not self.batch_first: | |
x = x.permute(1, 0, 2) | |
return x, None | |
def scaled_query_key_softmax(q, k, att_mask): | |
from xformers.ops import masked_matmul | |
q = q / (k.size(-1)) ** 0.5 | |
att = masked_matmul(q, k.transpose(-2, -1), att_mask) | |
att = torch.nn.functional.softmax(att, -1) | |
return att | |
def scaled_dot_product_attention(q, k, v, att_mask, dropout): | |
att = scaled_query_key_softmax(q, k, att_mask=att_mask) | |
att = dropout(att) | |
y = att @ v | |
return y | |
def _compute_buckets(x, R): | |
qq = torch.einsum('btf,bfhi->bhti', x, R) | |
qq = torch.cat([qq, -qq], dim=-1) | |
buckets = qq.argmax(dim=-1) | |
return buckets.permute(0, 2, 1).byte().contiguous() | |
def dynamic_sparse_attention(query, key, value, sparsity, infer_sparsity=True, attn_bias=None): | |
# assert False, "The code for the custom sparse kernel is not ready for release yet." | |
from xformers.ops import find_locations, sparse_memory_efficient_attention | |
n_hashes = 32 | |
proj_size = 4 | |
query, key, value = [x.contiguous() for x in [query, key, value]] | |
with torch.no_grad(): | |
R = torch.randn(1, query.shape[-1], n_hashes, proj_size // 2, device=query.device) | |
bucket_query = _compute_buckets(query, R) | |
bucket_key = _compute_buckets(key, R) | |
row_offsets, column_indices = find_locations( | |
bucket_query, bucket_key, sparsity, infer_sparsity) | |
return sparse_memory_efficient_attention( | |
query, key, value, row_offsets, column_indices, attn_bias) | |