Spaces:
Runtime error
Runtime error
Christian Koch
commited on
Commit
•
cd3659c
1
Parent(s):
479b050
further improvements, implement question generator
Browse files- app.py +30 -76
- question_gen.py +26 -0
app.py
CHANGED
@@ -1,84 +1,52 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
-
import nltk
|
4 |
|
5 |
from fill_in_summary import FillInSummary
|
6 |
from paraphrase import PegasusParaphraser
|
7 |
-
import
|
8 |
|
9 |
-
nltk.download('punkt')
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-small")
|
14 |
|
15 |
|
16 |
st.set_page_config(layout="centered")
|
17 |
st.title('Question Generator by Eddevs')
|
|
|
18 |
|
19 |
-
select = st.selectbox('Type',
|
20 |
-
|
21 |
|
22 |
if select == "Question Generator":
|
23 |
with st.form("question_gen"):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
text_input = st.text_area("Input Text")
|
29 |
|
30 |
submitted = st.form_submit_button("Generate")
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
if split:
|
35 |
-
# Split into sentences
|
36 |
-
sent_tokenized = nltk.sent_tokenize(text_input)
|
37 |
-
res = {}
|
38 |
-
|
39 |
-
with st.spinner('Please wait while the inputs are being processed...'):
|
40 |
-
# Iterate over sentences
|
41 |
-
for sentence in sent_tokenized:
|
42 |
-
predictions = model.multitask([sentence], max_length=512)
|
43 |
-
questions, answers, answers_bis = predictions['questions'], predictions['answers'], predictions[
|
44 |
-
'answers_bis']
|
45 |
-
|
46 |
-
# Build answer dict
|
47 |
-
content = {}
|
48 |
-
for question, answer, answer_bis in zip(questions[0], answers[0], answers_bis[0]):
|
49 |
-
content[question] = {'answer (extracted)': answer, 'answer (generated)': answer_bis}
|
50 |
-
res[sentence] = content
|
51 |
-
|
52 |
-
# Answer area
|
53 |
-
st.write(res)
|
54 |
-
|
55 |
-
else:
|
56 |
-
with st.spinner('Please wait while the inputs are being processed...'):
|
57 |
-
# Prediction
|
58 |
-
predictions = model.multitask([text_input], max_length=512)
|
59 |
-
questions, answers, answers_bis = predictions['questions'], predictions['answers'], predictions[
|
60 |
-
'answers_bis']
|
61 |
-
|
62 |
-
# Answer area
|
63 |
-
zip = zip(questions[0], answers[0], answers_bis[0])
|
64 |
-
content = {}
|
65 |
-
for question, answer, answer_bis in zip:
|
66 |
-
content[question] = {'answer (extracted)': answer, 'answer (generated)': answer_bis}
|
67 |
-
|
68 |
-
st.write(content)
|
69 |
-
if submitted:
|
70 |
-
with st.spinner('Wait for it...'):
|
71 |
-
result = FillInSummary().summarize(text_input)
|
72 |
-
st.write(text_input)
|
73 |
|
74 |
|
75 |
elif select == "Summarization":
|
76 |
with st.form("summarization"):
|
77 |
-
|
78 |
-
# left_column.selectbox('Type', ['Question Generator', 'Paraphrasing'])
|
79 |
-
#st.selectbox('Model', ['T5', 'GPT Neo-X'])
|
80 |
-
|
81 |
-
text_input = st.text_area("Input Text")
|
82 |
|
83 |
submitted = st.form_submit_button("Generate")
|
84 |
|
@@ -90,7 +58,7 @@ elif select == "Summarization":
|
|
90 |
|
91 |
elif select == "Fill in the blank":
|
92 |
with st.form("fill_in_the_blank"):
|
93 |
-
text_input = st.text_area("Input Text")
|
94 |
|
95 |
submitted = st.form_submit_button("Generate")
|
96 |
|
@@ -104,29 +72,15 @@ elif select == "Fill in the blank":
|
|
104 |
|
105 |
elif select == "Paraphrasing":
|
106 |
with st.form("paraphrasing"):
|
107 |
-
# st.selectbox('Model', ['T5', 'GPT Neo-X'])
|
108 |
left_column, right_column = st.columns(2)
|
109 |
count = left_column.slider('Count', 0, 10, 3)
|
110 |
temperature = right_column.slider('Temperature', 0.0, 10.0, 1.5)
|
111 |
-
text_input = st.text_area("Input Text")
|
112 |
|
113 |
submitted = st.form_submit_button("Generate")
|
114 |
|
115 |
if submitted:
|
116 |
with st.spinner('Wait for it...'):
|
117 |
-
paraphrase_model = PegasusParaphraser(num_return_sequences=count,temperature=temperature)
|
118 |
result = paraphrase_model.paraphrase(text_input)
|
119 |
st.write(result)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
#if st.button('Generate'):
|
126 |
-
# st.write(input)
|
127 |
-
#st.success("We have generated 105 Questions for you")
|
128 |
-
# st.snow()
|
129 |
-
##else:
|
130 |
-
##nothing here
|
131 |
-
|
132 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
|
3 |
|
4 |
from fill_in_summary import FillInSummary
|
5 |
from paraphrase import PegasusParaphraser
|
6 |
+
import question_gen as q
|
7 |
|
|
|
8 |
|
9 |
+
default_text = "Apple was founded as Apple Computer Company on April 1, 1976, by Steve Jobs, Steve Wozniak and Ronald " \
|
10 |
+
"Wayne to develop and sell Wozniak's Apple I personal computer. It was incorporated by Jobs and " \
|
11 |
+
"Wozniak as Apple Computer, Inc. in 1977 and the company's next computer, the Apple II became a best " \
|
12 |
+
"seller. Apple went public in 1980, to instant financial success. The company went onto develop new " \
|
13 |
+
"computers featuring innovative graphical user interfaces, including the original Macintosh, " \
|
14 |
+
"announced in a critically acclaimed advertisement, '1984', directed by Ridley Scott. By 1985, " \
|
15 |
+
"the high cost of its products and power struggles between executives caused problems. Wozniak stepped " \
|
16 |
+
"back from Apple amicably, while Jobs resigned to found NeXT, taking some Apple employees with him. "
|
17 |
+
|
18 |
+
default_text2 = "The board of directors instructed Sculley to contain Jobs and his ability to launch expensive forays " \
|
19 |
+
"into untested products "
|
20 |
|
|
|
21 |
|
22 |
|
23 |
st.set_page_config(layout="centered")
|
24 |
st.title('Question Generator by Eddevs')
|
25 |
+
st.write('Please select the task you want to do.')
|
26 |
|
27 |
+
select = st.selectbox('Type', ['Question Generator', 'Paraphrasing', 'Summarization', 'Fill in the blank'])
|
|
|
28 |
|
29 |
if select == "Question Generator":
|
30 |
with st.form("question_gen"):
|
31 |
+
left_column, right_column = st.columns(2)
|
32 |
+
num_seq = left_column.slider('Question Count', 0, 10, 3)
|
33 |
+
beams = right_column.slider('Beams', 0, 10, 5)
|
34 |
+
max_length = st.slider('Max Length', 0, 1024, 300)
|
35 |
+
text_input = st.text_area("Input Text", value=default_text)
|
36 |
|
37 |
submitted = st.form_submit_button("Generate")
|
38 |
+
if submitted:
|
39 |
+
with st.spinner('Wait for it...'):
|
40 |
+
question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')
|
41 |
+
question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_squad_v1')
|
42 |
|
43 |
+
result = q.get_question(text_input, "", question_model, question_tokenizer, num_seq, beams, max_length)
|
44 |
+
st.write(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
elif select == "Summarization":
|
48 |
with st.form("summarization"):
|
49 |
+
text_input = st.text_area("Input Text", value=default_text)
|
|
|
|
|
|
|
|
|
50 |
|
51 |
submitted = st.form_submit_button("Generate")
|
52 |
|
|
|
58 |
|
59 |
elif select == "Fill in the blank":
|
60 |
with st.form("fill_in_the_blank"):
|
61 |
+
text_input = st.text_area("Input Text", value=default_text)
|
62 |
|
63 |
submitted = st.form_submit_button("Generate")
|
64 |
|
|
|
72 |
|
73 |
elif select == "Paraphrasing":
|
74 |
with st.form("paraphrasing"):
|
|
|
75 |
left_column, right_column = st.columns(2)
|
76 |
count = left_column.slider('Count', 0, 10, 3)
|
77 |
temperature = right_column.slider('Temperature', 0.0, 10.0, 1.5)
|
78 |
+
text_input = st.text_area("Input Text", value=default_text2)
|
79 |
|
80 |
submitted = st.form_submit_button("Generate")
|
81 |
|
82 |
if submitted:
|
83 |
with st.spinner('Wait for it...'):
|
84 |
+
paraphrase_model = PegasusParaphraser(num_return_sequences=count, temperature=temperature)
|
85 |
result = paraphrase_model.paraphrase(text_input)
|
86 |
st.write(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
question_gen.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# beams = 5, return_seq = 1, max_length = 300
|
3 |
+
def get_question(sentence,answer,mdl,tknizer, num_seq, num_beams, max_length):
|
4 |
+
if num_seq > num_beams:
|
5 |
+
num_seq = num_beams
|
6 |
+
|
7 |
+
prompt = "context: {} answer: {}".format(sentence,answer)
|
8 |
+
print (prompt)
|
9 |
+
max_len = 256
|
10 |
+
encoding = tknizer.encode_plus(prompt,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt")
|
11 |
+
|
12 |
+
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
|
13 |
+
|
14 |
+
outs = mdl.generate(input_ids=input_ids,
|
15 |
+
attention_mask=attention_mask,
|
16 |
+
early_stopping=True,
|
17 |
+
num_beams=num_beams,
|
18 |
+
num_return_sequences=num_seq,
|
19 |
+
no_repeat_ngram_size=2,
|
20 |
+
max_length=max_length)
|
21 |
+
|
22 |
+
dec = [tknizer.decode(ids,skip_special_tokens=True) for ids in outs]
|
23 |
+
|
24 |
+
Question = dec[0].replace("question:", "")
|
25 |
+
Question = Question.strip()
|
26 |
+
return Question
|