dosenbiiir commited on
Commit
93f6c86
1 Parent(s): 94991cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -17
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
-
4
 
5
  tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-small-finetuned-quora-for-paraphrasing")
6
  model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-small-finetuned-quora-for-paraphrasing")
@@ -14,25 +13,23 @@ right_column.selectbox('Question Generator', ['T5', 'GPT Neo-X'])
14
 
15
  input = st.text_area("Input Text")
16
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  if st.button('Generate'):
19
  st.write(input)
 
20
  st.success("We have generated 105 Questions for you")
21
  st.snow()
22
  ##else:
23
  ##nothing here
24
-
25
- def paraphrase(text, max_length=128):
26
-
27
- input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
28
-
29
- generated_ids = model.generate(input_ids=input_ids, num_return_sequences=5, num_beams=5, max_length=max_length, no_repeat_ngram_size=2, repetition_penalty=3.5, length_penalty=1.0, early_stopping=True)
30
-
31
- preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
32
-
33
- return preds
34
-
35
- preds = paraphrase("paraphrase: What is the best framework for dealing with a huge text dataset?")
36
-
37
- for pred in preds:
38
- st.write(pred)
 
1
  import streamlit as st
2
+ from transformers import pipeline
 
3
 
4
  tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-small-finetuned-quora-for-paraphrasing")
5
  model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-small-finetuned-quora-for-paraphrasing")
 
13
 
14
  input = st.text_area("Input Text")
15
 
16
+ def summarize(text):
17
+ # Refer to https://huggingface.co/docs/transformers/v4.18.0/en/main_classes/pipelines#transformers.SummarizationPipeline
18
+ # for further information about configuration.
19
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
20
+ # Refer to https://huggingface.co/docs/transformers/main/en/main_classes/configuration#transformers.PretrainedConfig
21
+ # for further configuration of of the
22
+ output: list = summarizer(
23
+ text,
24
+ max_length=130,
25
+ min_length=30,
26
+ do_sample=False)
27
+ return output
28
 
29
  if st.button('Generate'):
30
  st.write(input)
31
+ st.write(summarize(input))
32
  st.success("We have generated 105 Questions for you")
33
  st.snow()
34
  ##else:
35
  ##nothing here