Edmilson Alexandre commited on
Commit
266d9b4
·
1 Parent(s): f4d5c9c
Files changed (5) hide show
  1. API_flask_server.py +29 -0
  2. NASA.ipynb +1 -0
  3. README.md +2 -10
  4. model.py +279 -0
  5. requirements.txt +5 -0
API_flask_server.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## An python API for our Model
2
+ ## Design by edander32 (Edmilson Alexandre) and jjambo(Joaquim Jambo)
3
+
4
+ from flask import Flask, request, jsonify
5
+ import pandas as pd
6
+ import joblib
7
+
8
+ app = Flask(__name__)
9
+
10
+ model = joblib.load("exoplanet_model.pkl")
11
+
12
+ @app.route("/")
13
+ def home():
14
+ return {"message": "API do classificador de exoplanetas online."}
15
+
16
+ @app.route("/predict", methods=["POST"])
17
+ def predict():
18
+ try:
19
+ data = request.get_json()
20
+ df = pd.DataFrame([data])
21
+ pred = model.predict(df)[0]
22
+ prob = model.predict_proba(df)[0][1]
23
+ return jsonify({"prediction": int(pred), "probability": float(prob)})
24
+ except Exception as e:
25
+ return jsonify({"error": str(e)}), 400
26
+
27
+ if __name__ == "__main__":
28
+ app.run(host="0.0.0.0", port=7860)
29
+
NASA.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyO5J/RoFrpl8dZBuNzBEwXn"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","source":["!pip install -q lightgbm tsfresh optuna scikit-learn pandas numpy matplotlib seaborn joblib"],"metadata":{"id":"wHEiah4us0eh","executionInfo":{"status":"ok","timestamp":1759609790439,"user_tz":-60,"elapsed":9712,"user":{"displayName":"Edmilson Alexandre","userId":"05182212798533402489"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"b24f02b2-de03-4178-aa06-6dfdae9e2094"},"execution_count":2,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/400.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━\u001b[0m \u001b[32m348.2/400.9 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m400.9/400.9 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h"]}]},{"cell_type":"code","source":["import os\n","import numpy\n","import pandas\n","import joblib\n","import optuna\n","import tsfresh\n","import sklearn\n","import seaborn\n","import lightgbm\n","import matplotlib\n","from google.colab import drive\n","\n","\n","def EDA(file):\n"," pandas.set_option('display.max_columns', 200)\n"," target_col = 'target'\n"," print(\"Shape from file: \", file.shape)\n"," # display(file.head())\n"," # print(file.dtypes)\n","\n","def PipelineCreation(file, target_col):\n"," from sklearn.model_selection import train_test_split\n"," from sklearn.pipeline import Pipeline\n"," from sklearn.impute import SimpleImputer\n"," from sklearn.preprocessing import OneHotEncoder\n"," from sklearn.compose import ColumnTransformer\n","\n"," id_cols = [c for c in ['id', 'time', 'index'] if c in file.columns]\n"," x = file.drop(columns=[target_col] + id_cols, errors='ignore')\n"," y = file[target_col]\n","\n"," numeric_features = x.select_dtypes(include=['number']).columns.tolist()\n"," categorical_features = x.select_dtypes(include=['object', 'category', 'bool']).columns.tolist()\n"," # print(\"Numeric: \", len(numeric_features))\n"," # print(\"Categorical: \", len(categorical_features))\n"," # print(\"X: \", x)\n"," # print(\"Y: \", y)\n","\n"," numeric_transformer = Pipeline([('imputer', SimpleImputer(strategy='median')),])\n","\n"," categorical_transformer = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')),\n"," ('ohe', OneHotEncoder(handle_unknown='ignore')),])\n"," print(f\"Num:{len(numeric_features)}\")\n"," preprocessor = ColumnTransformer([\n"," ('num', numeric_transformer, numeric_features),\n"," ('cat', categorical_transformer, categorical_features),\n"," ], remainder='drop')\n"," return x, y, preprocessor\n","\n","def Training(x_train_tr, y_train):\n"," from lightgbm import LGBMClassifier\n"," scale_pos_weight = (y_train==0).sum() / max(1, (y_train==1).sum())\n"," model = LGBMClassifier(\n"," objective='binary',\n"," n_estimators=10000,\n"," learning_rate=0.05,\n"," num_leaves=31,\n"," random_state=42,\n"," scale_pos_weight=scale_pos_weight\n"," )\n"," model.fit(\n"," x_train_tr, y_train,\n"," eval_set=[(x_val_tr, y_val)],\n"," eval_metric='auc',\n"," #my version does not support that method. I need to use callbacks\n"," #early_stopping_rounds=100,\n"," #callbacks=[early_stopping(100), log_evaluation(100)]\n"," )\n"," print(\"Best iteration:\", model.best_iteration_)\n"," print(\"Train AUC:\", model.best_score_['training']['auc'])\n"," print(\"Valid AUC:\", model.best_score_['valid_0']['auc'])\n","\n"," return model\n","\n","\n","\n","from sklearn.model_selection import train_test_split\n","if os.path.exists('/content/drive') == 0:\n"," drive.mount('/content/drive')\n","\n","labels = pandas.read_csv('/content/drive/MyDrive/AI_assets/labels.csv')\n","light_curves = pandas.read_csv('/content/drive/MyDrive/AI_assets/light_curves.csv')\n","metadata = pandas.read_csv('/content/drive/MyDrive/AI_assets/metadata.csv')\n","data = pandas.read_csv('/content/drive/MyDrive/data2.csv')\n","\n","# im gonna change this under cause i nedd more classes. Using binary interpretation insted of 'CONFIRMED' will help a lot\n","#x, y, preprocessor = PipelineCreation(data, target_col='kepoi_name')\n","\n","data['target'] = data['koi_disposition'].map(\n"," lambda v: 1 if v == \"CONFIRMED\" else 0\n",")\n","\n","x, y, preprocessor = PipelineCreation(data, target_col='target')\n","print(\"First step done. 1 -> PIPELINE CREATION\")\n","# print(\"X: \", x)\n","# print(\"Y: \", y)\n","x_train, x_val, y_train, y_val = train_test_split(\n"," x, y, test_size=0.20, stratify=y, random_state=42\n"," )\n","preprocessor.fit(x_train)\n","x_train_tr = preprocessor.transform(x_train)\n","x_val_tr = preprocessor.transform(x_val)\n","EDA(labels)\n","\n","#debug purposes\n","print(\"Second step done. 2 -> EDA DONE\")\n","print(\"X_train shape:\", x_train_tr.shape)\n","print(\"X_val shape:\", x_val_tr.shape)\n","print(\"y_train distribution:\\n\", y_train.value_counts())\n","print(\"y_val distribution:\\n\", y_val.value_counts())\n","print(\"Check for NaNs:\", x_train_tr.isna().sum().sum(), \"in train,\", x_val_tr.isna().sum().sum(), \"in val\")\n","\n","\n","#model = Training(x_train_tr, y_train)\n","#print(\"Finished Training. 3!!\")\n","\n","\n","# A litle degub made by GPT\n","# print(\"Best iteration:\", model.best_iteration_)\n","# print(\"Train AUC:\", model.best_score_['training']['auc'])\n","# print(\"Valid AUC:\", model.best_score_['valid_0']['auc'])\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":873},"id":"-kgzOBe6QXbJ","executionInfo":{"status":"error","timestamp":1759611069253,"user_tz":-60,"elapsed":20,"user":{"displayName":"Edmilson Alexandre","userId":"05182212798533402489"}},"outputId":"98dc3b31-acee-4a6d-c30e-9f15901a1b25"},"execution_count":8,"outputs":[{"output_type":"stream","name":"stdout","text":["Num:133\n","First step done. 1 -> PIPELINE CREATION\n","Shape from file: (4, 2)\n","Second step done. 2 -> EDA DONE\n","X_train shape: (8, 172)\n","X_val shape: (2, 172)\n","y_train distribution:\n"," target\n","1 6\n","0 2\n","Name: count, dtype: int64\n","y_val distribution:\n"," target\n","0 1\n","1 1\n","Name: count, dtype: int64\n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.12/dist-packages/sklearn/impute/_base.py:635: UserWarning: Skipping features without any observed values: ['koi_gmag_err' 'koi_rmag_err' 'koi_imag_err' 'koi_zmag_err'\n"," 'koi_kepmag_err' 'koi_model_dof' 'koi_model_chisq' 'koi_eccen_err1'\n"," 'koi_eccen_err2' 'koi_longp' 'koi_longp_err1' 'koi_longp_err2'\n"," 'koi_sma_err1' 'koi_sma_err2' 'koi_ingress' 'koi_ingress_err1'\n"," 'koi_ingress_err2' 'koi_incl_err1' 'koi_incl_err2' 'koi_teq_err1'\n"," 'koi_teq_err2' 'koi_sage' 'koi_sage_err1' 'koi_sage_err2']. At least one non-missing value is needed for imputation with strategy='median'.\n"," warnings.warn(\n","/usr/local/lib/python3.12/dist-packages/sklearn/impute/_base.py:635: UserWarning: Skipping features without any observed values: ['koi_gmag_err' 'koi_rmag_err' 'koi_imag_err' 'koi_zmag_err'\n"," 'koi_kepmag_err' 'koi_model_dof' 'koi_model_chisq' 'koi_eccen_err1'\n"," 'koi_eccen_err2' 'koi_longp' 'koi_longp_err1' 'koi_longp_err2'\n"," 'koi_sma_err1' 'koi_sma_err2' 'koi_ingress' 'koi_ingress_err1'\n"," 'koi_ingress_err2' 'koi_incl_err1' 'koi_incl_err2' 'koi_teq_err1'\n"," 'koi_teq_err2' 'koi_sage' 'koi_sage_err1' 'koi_sage_err2']. At least one non-missing value is needed for imputation with strategy='median'.\n"," warnings.warn(\n","/usr/local/lib/python3.12/dist-packages/sklearn/impute/_base.py:635: UserWarning: Skipping features without any observed values: ['koi_gmag_err' 'koi_rmag_err' 'koi_imag_err' 'koi_zmag_err'\n"," 'koi_kepmag_err' 'koi_model_dof' 'koi_model_chisq' 'koi_eccen_err1'\n"," 'koi_eccen_err2' 'koi_longp' 'koi_longp_err1' 'koi_longp_err2'\n"," 'koi_sma_err1' 'koi_sma_err2' 'koi_ingress' 'koi_ingress_err1'\n"," 'koi_ingress_err2' 'koi_incl_err1' 'koi_incl_err2' 'koi_teq_err1'\n"," 'koi_teq_err2' 'koi_sage' 'koi_sage_err1' 'koi_sage_err2']. At least one non-missing value is needed for imputation with strategy='median'.\n"," warnings.warn(\n"]},{"output_type":"error","ename":"AttributeError","evalue":"'numpy.ndarray' object has no attribute 'isna'","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)","\u001b[0;32m/tmp/ipython-input-2064020500.py\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"y_train distribution:\\n\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue_counts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"y_val distribution:\\n\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_val\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue_counts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 111\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Check for NaNs:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx_train_tr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"in train,\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx_val_tr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"in val\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 112\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'isna'"]}]},{"cell_type":"code","source":[],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"CAErcbk0yL-d","executionInfo":{"status":"ok","timestamp":1759540476879,"user_tz":-60,"elapsed":10596,"user":{"displayName":"Edmilson Alexandre","userId":"05182212798533402489"}},"outputId":"571ef5ef-7d8f-462c-8449-2d4444e39ed6"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting tabgan==1.3.3\n"," Downloading tabgan-1.3.3-py2.py3-none-any.whl.metadata (10.0 kB)\n","Requirement already satisfied: pandas in /usr/local/lib/python3.12/dist-packages (from tabgan==1.3.3) (2.2.2)\n","Requirement already satisfied: numpy in /usr/local/lib/python3.12/dist-packages (from tabgan==1.3.3) (2.0.2)\n","Collecting category-encoders (from tabgan==1.3.3)\n"," Downloading category_encoders-2.8.1-py3-none-any.whl.metadata (7.9 kB)\n","Requirement already satisfied: torch>=1.0 in /usr/local/lib/python3.12/dist-packages (from tabgan==1.3.3) (2.8.0+cu126)\n","Requirement already satisfied: lightgbm>=2.2.3 in /usr/local/lib/python3.12/dist-packages (from tabgan==1.3.3) (4.6.0)\n","Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.12/dist-packages (from tabgan==1.3.3) (1.6.1)\n","Requirement already satisfied: torchvision in /usr/local/lib/python3.12/dist-packages (from tabgan==1.3.3) (0.23.0+cu126)\n","Requirement already satisfied: python-dateutil in /usr/local/lib/python3.12/dist-packages (from tabgan==1.3.3) (2.9.0.post0)\n","Requirement already satisfied: tqdm in /usr/local/lib/python3.12/dist-packages (from tabgan==1.3.3) (4.67.1)\n","Requirement already satisfied: scipy in /usr/local/lib/python3.12/dist-packages (from lightgbm>=2.2.3->tabgan==1.3.3) (1.16.2)\n","Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.12/dist-packages (from scikit-learn>=1.0.2->tabgan==1.3.3) (1.5.2)\n","Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.12/dist-packages (from scikit-learn>=1.0.2->tabgan==1.3.3) (3.6.0)\n","Requirement already satisfied: filelock in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (3.19.1)\n","Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (4.15.0)\n","Requirement already satisfied: setuptools in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (75.2.0)\n","Requirement already satisfied: sympy>=1.13.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (1.13.3)\n","Requirement already satisfied: networkx in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (3.5)\n","Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (3.1.6)\n","Requirement already satisfied: fsspec in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (2025.3.0)\n","Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (12.6.77)\n","Requirement already satisfied: nvidia-cuda-runtime-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (12.6.77)\n","Requirement already satisfied: nvidia-cuda-cupti-cu12==12.6.80 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (12.6.80)\n","Requirement already satisfied: nvidia-cudnn-cu12==9.10.2.21 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (9.10.2.21)\n","Requirement already satisfied: nvidia-cublas-cu12==12.6.4.1 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (12.6.4.1)\n","Requirement already satisfied: nvidia-cufft-cu12==11.3.0.4 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (11.3.0.4)\n","Requirement already satisfied: nvidia-curand-cu12==10.3.7.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (10.3.7.77)\n","Requirement already satisfied: nvidia-cusolver-cu12==11.7.1.2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (11.7.1.2)\n","Requirement already satisfied: nvidia-cusparse-cu12==12.5.4.2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (12.5.4.2)\n","Requirement already satisfied: nvidia-cusparselt-cu12==0.7.1 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (0.7.1)\n","Requirement already satisfied: nvidia-nccl-cu12==2.27.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (2.27.3)\n","Requirement already satisfied: nvidia-nvtx-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (12.6.77)\n","Requirement already satisfied: nvidia-nvjitlink-cu12==12.6.85 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (12.6.85)\n","Requirement already satisfied: nvidia-cufile-cu12==1.11.1.6 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (1.11.1.6)\n","Requirement already satisfied: triton==3.4.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.0->tabgan==1.3.3) (3.4.0)\n","Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.12/dist-packages (from category-encoders->tabgan==1.3.3) (1.0.1)\n","Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.12/dist-packages (from category-encoders->tabgan==1.3.3) (0.14.5)\n","Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.12/dist-packages (from pandas->tabgan==1.3.3) (2025.2)\n","Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.12/dist-packages (from pandas->tabgan==1.3.3) (2025.2)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil->tabgan==1.3.3) (1.17.0)\n","Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.12/dist-packages (from torchvision->tabgan==1.3.3) (11.3.0)\n","Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.12/dist-packages (from statsmodels>=0.9.0->category-encoders->tabgan==1.3.3) (25.0)\n","Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.12/dist-packages (from sympy>=1.13.3->torch>=1.0->tabgan==1.3.3) (1.3.0)\n","Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->torch>=1.0->tabgan==1.3.3) (3.0.3)\n","Downloading tabgan-1.3.3-py2.py3-none-any.whl (28 kB)\n","Downloading category_encoders-2.8.1-py3-none-any.whl (85 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.7/85.7 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hInstalling collected packages: category-encoders, tabgan\n","Successfully installed category-encoders-2.8.1 tabgan-1.3.3\n"]}]}]}
README.md CHANGED
@@ -1,10 +1,2 @@
1
- ---
2
- title: Exo
3
- emoji: 😻
4
- colorFrom: gray
5
- colorTo: indigo
6
- sdk: docker
7
- pinned: false
8
- ---
9
-
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # AI-Exo-Hunter
2
+ Hunting exoplanets using AI
 
 
 
 
 
 
 
 
model.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy
3
+ import pandas
4
+ import joblib
5
+ import optuna
6
+ import tsfresh
7
+ import sklearn
8
+ import seaborn
9
+ import lightgbm
10
+ import matplotlib
11
+ from google.colab import drive
12
+
13
+
14
+ def EDA(file):
15
+ pandas.set_option('display.max_columns', 200)
16
+ target_col = 'target'
17
+ print("Shape from file: ", file.shape)
18
+ # display(file.head())
19
+ # print(file.dtypes)
20
+
21
+ def PipelineCreation(file, target_col):
22
+ from sklearn.model_selection import train_test_split
23
+ from sklearn.pipeline import Pipeline
24
+ from sklearn.impute import SimpleImputer
25
+ from sklearn.preprocessing import OneHotEncoder
26
+ from sklearn.compose import ColumnTransformer
27
+
28
+ id_cols = [c for c in ['id', 'time', 'index'] if c in file.columns]
29
+ x = file.drop(columns=[target_col] + id_cols, errors='ignore')
30
+ y = file[target_col]
31
+
32
+ numeric_features = x.select_dtypes(include=['number']).columns.tolist()
33
+ categorical_features = x.select_dtypes(include=['object', 'category', 'bool']).columns.tolist()
34
+ # print("Numeric: ", len(numeric_features))
35
+ # print("Categorical: ", len(categorical_features))
36
+ # print("X: ", x)
37
+ # print("Y: ", y)
38
+
39
+ numeric_transformer = Pipeline([('imputer', SimpleImputer(strategy='median')),])
40
+
41
+ #categorical_transformer = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')),
42
+ # ('ohe', OneHotEncoder(handle_unknown='ignore')),])
43
+ categorical_transformer = Pipeline([
44
+ ('imputer', SimpleImputer(strategy='most_frequent')),
45
+ ('ohe', OneHotEncoder(handle_unknown='ignore', sparse_output=False)),
46
+ ])
47
+
48
+ print(f"Num:{len(numeric_features)}")
49
+ preprocessor = ColumnTransformer([
50
+ ('num', numeric_transformer, numeric_features),
51
+ ('cat', categorical_transformer, categorical_features),
52
+ ], remainder='drop')
53
+ return x, y, preprocessor
54
+
55
+ def Training(x_train_clean, y_train, x_val_clean, y_val):
56
+ # from lightgbm import LGBMClassifier
57
+ # scale_pos_weight = (y_train==0).sum() / max(1, (y_train==1).sum())
58
+ # model = LGBMClassifier(
59
+ # objective='binary',
60
+ # n_estimators=10000,
61
+ # learning_rate=0.05,
62
+ # num_leaves=31,
63
+ # random_state=42,
64
+ # scale_pos_weight=scale_pos_weight
65
+ # )
66
+ # model.fit(
67
+ # x_train_tr, y_train,
68
+ # eval_set=[(x_val_tr, y_val)],
69
+ # eval_metric='auc',
70
+ # #my version does not support that method. I need to use callbacks
71
+ # #early_stopping_rounds=100,
72
+ # #callbacks=[early_stopping(100), log_evaluation(100)]
73
+ # )
74
+ # print("Best iteration:", model.best_iteration_)
75
+ # print("Train AUC:", model.best_score_['training']['auc'])
76
+ # print("Valid AUC:", model.best_score_['valid_0']['auc'])
77
+ from lightgbm import LGBMClassifier
78
+
79
+ # model = LGBMClassifier(
80
+ # objective='binary',
81
+ # n_estimators=2000,
82
+ # learning_rate=0.05,
83
+ # num_leaves=31,
84
+ # min_child_samples=1,
85
+ # random_state=42
86
+ # )
87
+
88
+ model = LGBMClassifier(
89
+ objective='binary',
90
+ n_estimators=2000,
91
+ learning_rate=0.05,
92
+ num_leaves=31,
93
+ min_child_samples=1,
94
+ min_split_gain=0.0, # permite splits mesmo sem ganho positivo aparente
95
+ min_data_in_leaf=1, # remove restrição mínima
96
+ random_state=42
97
+ )
98
+
99
+ model.fit(
100
+ x_train_clean, y_train,
101
+ eval_set=[(x_val_clean, y_val)],
102
+ eval_metric='auc',
103
+ )
104
+
105
+ print("Best iteration:", model.best_iteration_)
106
+
107
+
108
+ return model
109
+
110
+
111
+
112
+ from sklearn.model_selection import train_test_split
113
+ if os.path.exists('/content/drive') == 0:
114
+ drive.mount('/content/drive')
115
+
116
+ labels = pandas.read_csv('/content/drive/MyDrive/AI_assets/labels.csv')
117
+ light_curves = pandas.read_csv('/content/drive/MyDrive/AI_assets/light_curves.csv')
118
+ metadata = pandas.read_csv('/content/drive/MyDrive/AI_assets/metadata.csv')
119
+ #data = pandas.read_csv('/content/drive/MyDrive/exoplanets_normalized_data.csv')
120
+ data = pandas.read_csv('/content/drive/MyDrive/data.csv')
121
+
122
+ # im gonna change this under cause i nedd more classes. Using binary interpretation insted of 'CONFIRMED' will help a lot
123
+ #x, y, preprocessor = PipelineCreation(data, target_col='kepoi_name')
124
+
125
+ data['target'] = data['koi_disposition'].map(
126
+ lambda v: 1 if v == "CONFIRMED" else 0
127
+ )
128
+
129
+ x, y, preprocessor = PipelineCreation(data, target_col='target')
130
+ print("First step done. 1 -> PIPELINE CREATION")
131
+ # print("X: ", x)
132
+ # print("Y: ", y)
133
+ x_train, x_val, y_train, y_val = train_test_split(
134
+ x, y, test_size=0.20, stratify=y, random_state=42
135
+ )
136
+ preprocessor.fit(x_train)
137
+ x_train_tr = preprocessor.transform(x_train)
138
+ x_val_tr = preprocessor.transform(x_val)
139
+ EDA(labels)
140
+
141
+ #debug purposes
142
+ #print("Second step done. 2 -> EDA DONE")
143
+ #print("X_train shape:", x_train_tr.shape)
144
+ #print("X_val shape:", x_val_tr.shape)
145
+ #print("y_train distribution:\n", y_train.value_counts())
146
+ #print("y_val distribution:\n", y_val.value_counts())
147
+ #print("Check for NaNs:", x_train_tr.isna().sum().sum(), "in train,", x_val_tr.isna().sum().sum(), "in val")
148
+ import pandas as pd
149
+
150
+ x_train_df = pd.DataFrame(x_train_tr)
151
+ x_val_df = pd.DataFrame(x_val_tr)
152
+
153
+ # Remover colunas sem variância
154
+ valid_cols = x_train_df.columns[x_train_df.var() > 0]
155
+ x_train_clean = x_train_df[valid_cols]
156
+ x_val_clean = x_val_df[valid_cols]
157
+
158
+ import numpy as np
159
+ import pandas as pd
160
+
161
+ # X_train é seu conjunto de treino (DataFrame)
162
+ variancias = x_train_df.var()
163
+ sem_variancia = (variancias == 0).sum()
164
+
165
+ # print(f"Número de colunas com variância zero: {sem_variancia}/{len(variancias)}")
166
+ # print("Exemplo de variâncias não nulas:")
167
+ # print(variancias[variancias > 0].head())
168
+
169
+ # print("Número de colunas após filtragem:", len(valid_cols))
170
+ # print("Shape final de treino:", x_train_clean.shape)
171
+ # print("Distribuição de classes:")
172
+ # print(y_train.value_counts(normalize=True))
173
+ # print("Exemplo de valores:")
174
+ # print(x_train_clean.head())
175
+
176
+
177
+ # print("Tipo de dados:", x_train_clean.dtypes.unique())
178
+ # print("Faixa de valores nas primeiras colunas:")
179
+ # print(x_train_clean.iloc[:, :5].describe())
180
+ # import numpy as np
181
+
182
+ # print("Min:", np.min(x_train_clean.values))
183
+ # print("Max:", np.max(x_train_clean.values))
184
+ # print("Mean:", np.mean(x_train_clean.values))
185
+ # print("Std:", np.std(x_train_clean.values))
186
+ from sklearn.preprocessing import StandardScaler
187
+ from sklearn.feature_selection import VarianceThreshold
188
+ from lightgbm import LGBMClassifier
189
+
190
+ # === 1. Remover colunas quase constantes ===
191
+ var_sel = VarianceThreshold(threshold=1e-4)
192
+ x_train_filtered = var_sel.fit_transform(x_train_clean)
193
+ x_val_filtered = var_sel.transform(x_val_clean)
194
+
195
+ #print("Shape após VarianceThreshold:", x_train_filtered.shape)
196
+
197
+ # === 2. Padronizar ===
198
+ scaler = StandardScaler()
199
+ x_train_scaled = scaler.fit_transform(x_train_filtered)
200
+ x_val_scaled = scaler.transform(x_val_filtered)
201
+
202
+ # === 3. Treinar modelo ===
203
+ # model = LGBMClassifier(
204
+ # objective='binary',
205
+ # n_estimators=2000,
206
+ # learning_rate=0.05,
207
+ # num_leaves=31,
208
+ # random_state=42
209
+ # )
210
+
211
+ # model.fit(
212
+ # x_train_scaled, y_train,
213
+ # eval_set=[(x_val_scaled, y_val)],
214
+ # eval_metric='auc'
215
+ # )
216
+
217
+ # print("Best iteration:", model.best_iteration_)
218
+
219
+ #model = Training(x_train_clean, y_train, x_val_clean, y_val)
220
+ #print("Finished Training. 3!!")
221
+ # import numpy as np
222
+ # import pandas as pd
223
+
224
+ # # Converter se ainda estiver em numpy array
225
+ # x_train_df = pd.DataFrame(x_train_clean)
226
+
227
+ # # 1️⃣ Correlação média entre cada feature e o target
228
+ # corrs = []
229
+ # for col in x_train_df.columns:
230
+ # try:
231
+ # corrs.append(abs(np.corrcoef(x_train_df[col], y_train)[0,1]))
232
+ # except:
233
+ # corrs.append(0)
234
+ # mean_corr = np.nanmean(corrs)
235
+ # print("Correlação média com o target:", mean_corr)
236
+
237
+ # # 2️⃣ Contar quantas colunas têm correlação > 0.05
238
+ # useful = np.sum(np.array(corrs) > 0.05)
239
+ # print("Features com correlação > 0.05:", useful, "/", len(corrs))
240
+
241
+
242
+ # A litle degub made by GPT
243
+ # print("Best iteration:", model.best_iteration_)
244
+ # print("Train AUC:", model.best_score_['training']['auc'])
245
+ # print("Valid AUC:", model.best_score_['valid_0']['auc'])
246
+ import numpy as np
247
+
248
+ if hasattr(x_train_clean, "todense"):
249
+ x_train_clean = np.array(x_train_clean.todense(), dtype=np.float32)
250
+ x_val_clean = np.array(x_val_clean.todense(), dtype=np.float32)
251
+ else:
252
+ x_train_clean = np.array(x_train_clean, dtype=np.float32)
253
+ x_val_clean = np.array(x_val_clean, dtype=np.float32)
254
+ print("Treino - tipo:", type(x_train_clean))
255
+ print("Treino - shape:", x_train_clean.shape)
256
+ print("Treino - dtype:", x_train_clean.dtype)
257
+ print("Valores únicos de y:", np.unique(y_train, return_counts=True))
258
+
259
+ #model = Training(x_train_clean, y_train, x_val_clean, y_val)
260
+ from lightgbm import LGBMClassifier
261
+
262
+ model = LGBMClassifier(
263
+ objective='binary',
264
+ learning_rate=0.01,
265
+ n_estimators=2000,
266
+ random_state=42
267
+ )
268
+ model.fit(x_train_clean, y_train)
269
+ train_score = model.score(x_train_clean, y_train)
270
+ print("Treino score:", train_score)
271
+
272
+ from sklearn.metrics import accuracy_score
273
+
274
+ y_pred = model.predict(x_val_clean)
275
+ acc = accuracy_score(y_val, y_pred)
276
+ print(f"Acurácia: {acc:.4f}")
277
+
278
+
279
+
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ flask
2
+ pandas
3
+ joblib
4
+ scikit-learn
5
+ lightgbm