Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import (
|
5 |
+
ViTFeatureExtractor,
|
6 |
+
ViTForImageClassification,
|
7 |
+
pipeline,
|
8 |
+
AutoTokenizer,
|
9 |
+
AutoModelForSeq2SeqLM
|
10 |
+
)
|
11 |
+
from diffusers import StableDiffusionPipeline
|
12 |
+
|
13 |
+
# Load models
|
14 |
+
@st.cache_resource
|
15 |
+
def load_models():
|
16 |
+
age_model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier')
|
17 |
+
age_transforms = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier')
|
18 |
+
|
19 |
+
gender_model = ViTForImageClassification.from_pretrained('rizvandwiki/gender-classification-2')
|
20 |
+
gender_transforms = ViTFeatureExtractor.from_pretrained('rizvandwiki/gender-classification-2')
|
21 |
+
|
22 |
+
emotion_model = ViTForImageClassification.from_pretrained('dima806/facial_emotions_image_detection')
|
23 |
+
emotion_transforms = ViTFeatureExtractor.from_pretrained('dima806/facial_emotions_image_detection')
|
24 |
+
|
25 |
+
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
26 |
+
|
27 |
+
action_model = ViTForImageClassification.from_pretrained('rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224')
|
28 |
+
action_transforms = ViTFeatureExtractor.from_pretrained('rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224')
|
29 |
+
|
30 |
+
prompt_enhancer_tokenizer = AutoTokenizer.from_pretrained("gokaygokay/Flux-Prompt-Enhance")
|
31 |
+
prompt_enhancer_model = AutoModelForSeq2SeqLM.from_pretrained("gokaygokay/Flux-Prompt-Enhance")
|
32 |
+
prompt_enhancer = pipeline('text2text-generation',
|
33 |
+
model=prompt_enhancer_model,
|
34 |
+
tokenizer=prompt_enhancer_tokenizer,
|
35 |
+
repetition_penalty=1.2,
|
36 |
+
device="cpu")
|
37 |
+
|
38 |
+
# Load BK-SDM-Tiny for image generation
|
39 |
+
pipe = StableDiffusionPipeline.from_pretrained("nota-ai/bk-sdm-tiny", torch_dtype=torch.float16)
|
40 |
+
return (age_model, age_transforms, gender_model, gender_transforms,
|
41 |
+
emotion_model, emotion_transforms, object_detector,
|
42 |
+
action_model, action_transforms, prompt_enhancer, pipe)
|
43 |
+
|
44 |
+
models = load_models()
|
45 |
+
(age_model, age_transforms, gender_model, gender_transforms,
|
46 |
+
emotion_model, emotion_transforms, object_detector,
|
47 |
+
action_model, action_transforms, prompt_enhancer, pipe) = models
|
48 |
+
|
49 |
+
def predict(image, model, transforms):
|
50 |
+
# Convert the image to RGB format if necessary
|
51 |
+
if image.mode != 'RGB':
|
52 |
+
image = image.convert('RGB')
|
53 |
+
|
54 |
+
# Apply the transformations and predict
|
55 |
+
inputs = transforms(images=[image], return_tensors='pt')
|
56 |
+
output = model(**inputs)
|
57 |
+
proba = output.logits.softmax(1)
|
58 |
+
return proba.argmax(1).item()
|
59 |
+
|
60 |
+
def detect_attributes(image):
|
61 |
+
age = predict(image, age_model, age_transforms)
|
62 |
+
gender = predict(image, gender_model, gender_transforms)
|
63 |
+
emotion = predict(image, emotion_model, emotion_transforms)
|
64 |
+
action = predict(image, action_model, action_transforms)
|
65 |
+
|
66 |
+
objects = object_detector(image)
|
67 |
+
|
68 |
+
return {
|
69 |
+
'age': age_model.config.id2label[age],
|
70 |
+
'gender': gender_model.config.id2label[gender],
|
71 |
+
'emotion': emotion_model.config.id2label[emotion],
|
72 |
+
'action': action_model.config.id2label[action],
|
73 |
+
'objects': [obj['label'] for obj in objects]
|
74 |
+
}
|
75 |
+
|
76 |
+
def generate_prompt(attributes):
|
77 |
+
prompt = f"A {attributes['age']} {attributes['gender']} person feeling {attributes['emotion']} "
|
78 |
+
prompt += f"while {attributes['action']}. "
|
79 |
+
if attributes['objects']:
|
80 |
+
prompt += f"Image has {', '.join(attributes['objects'])}. "
|
81 |
+
return prompt
|
82 |
+
|
83 |
+
def enhance_prompt(prompt):
|
84 |
+
prefix = "enhance prompt: "
|
85 |
+
enhanced = prompt_enhancer(prefix + prompt, max_length=256)
|
86 |
+
return enhanced[0]['generated_text']
|
87 |
+
|
88 |
+
@st.cache_data
|
89 |
+
def generate_image(prompt):
|
90 |
+
# Generate image from the prompt using the BK-SDM-Tiny model
|
91 |
+
with torch.no_grad():
|
92 |
+
image = pipe(prompt, num_inference_steps=50).images[0]
|
93 |
+
return image
|
94 |
+
|
95 |
+
st.title("Image Attribute Detection and Image Generation")
|
96 |
+
|
97 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
98 |
+
|
99 |
+
if uploaded_file is not None:
|
100 |
+
image = Image.open(uploaded_file)
|
101 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
102 |
+
|
103 |
+
if st.button('Analyze Image'):
|
104 |
+
with st.spinner('Detecting attributes...'):
|
105 |
+
attributes = detect_attributes(image)
|
106 |
+
|
107 |
+
st.write("Detected Attributes:")
|
108 |
+
for key, value in attributes.items():
|
109 |
+
st.write(f"{key.capitalize()}: {value}")
|
110 |
+
|
111 |
+
with st.spinner('Generating prompt...'):
|
112 |
+
initial_prompt = generate_prompt(attributes)
|
113 |
+
enhanced_prompt = enhance_prompt(initial_prompt)
|
114 |
+
|
115 |
+
st.write("Initial Prompt:")
|
116 |
+
st.write(initial_prompt)
|
117 |
+
st.write("Enhanced Prompt:")
|
118 |
+
st.write(enhanced_prompt)
|
119 |
+
|
120 |
+
with st.spinner('Generating image...'):
|
121 |
+
generated_image = generate_image(enhanced_prompt)
|
122 |
+
st.image(generated_image, caption='Generated Image', use_column_width=True)
|