DDoS_Detect_Sim / app.py
EdBoy2202's picture
Create app.py
f1e3e91 verified
import streamlit as st
import pandas as pd
import time
import random
import folium
from folium.plugins import MarkerCluster
from streamlit_folium import st_folium
import pygeoip
from collections import deque, OrderedDict
import datetime
import plotly.graph_objs as go
from plotly.subplots import make_subplots
# Function to get geolocation
def get_geolocation(ip):
gi = pygeoip.GeoIP('GeoLiteCity.dat')
try:
return gi.record_by_addr(ip)
except:
return None
# Function to simulate a DDoS attack
def simulate_ddos_attack():
simulated_ips = [f"192.168.1.{random.randint(1, 255)}" for _ in range(10)]
packets = random.randint(50, 200) # Random packet count
return simulated_ips, packets
# Set up the Streamlit app
st.title("Real-Time Network Traffic DDoS Monitor")
# Create a single stop button at the top of the app
stop_button = st.button('Stop', key='stop_button')
# Statistics section
st.header("Statistics")
col1, col2, col3 = st.columns(3)
with col1:
total_packets = st.empty()
with col2:
ddos_flows = st.empty()
with col3:
benign_flows = st.empty()
# Divider line
st.markdown("---")
# Active Flows section
st.header("Active Flows")
# Create placeholders for the tables, graphs, and map
active_flows_placeholder = st.empty()
malicious_ips_placeholder = st.empty()
graphs_placeholder = st.empty()
map_placeholder = st.empty()
# Initialize map in session state if it doesn't exist
if 'map' not in st.session_state:
st.session_state.map = folium.Map(location=[0, 0], zoom_start=2)
st.session_state.marker_cluster = MarkerCluster().add_to(st.session_state.map)
st.session_state.map_counter = 0
m = st.session_state.map
marker_cluster = st.session_state.marker_cluster
# Display the initial map
st_folium(m, width=700, height=500, key="initial_map")
# Load data in chunks
chunk_size = 1000 # Adjust this value based on your needs
data_iterator = pd.read_csv('SSDP_Flood_output_copy.csv', chunksize=chunk_size)
# Initialize data structures
if 'ip_packet_counts' not in st.session_state:
st.session_state.ip_packet_counts = {}
if 'time_series_data' not in st.session_state:
st.session_state.time_series_data = []
if 'ip_packet_time_series' not in st.session_state:
st.session_state.ip_packet_time_series = {}
if 'recent_rows' not in st.session_state:
st.session_state.recent_rows = deque(maxlen=10) # Correctly structured as a deque
if 'malicious_ips' not in st.session_state:
st.session_state.malicious_ips = OrderedDict()
# Initialize counters
if 'total_packet_count' not in st.session_state:
st.session_state.total_packet_count = 0
if 'ddos_flow_count' not in st.session_state:
st.session_state.ddos_flow_count = 0
if 'benign_flow_count' not in st.session_state:
st.session_state.benign_flow_count = 0
# Flag to track if the map needs updating
map_updated = False
# Display Simulate DDoS Attack button
if st.button("Simulate DDoS Attack"):
simulated_ips, packets = simulate_ddos_attack()
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
for ip in simulated_ips:
# Create a structured row to append
row = {
'time': current_time,
'src': ip,
'sport': random.randint(1024, 65535),
'dst': '192.168.0.1', # Target IP
'dport': 80, # Target port
'protocol': 'TCP',
'packets': packets,
'label': 1 # Simulate as malicious
}
# Ensure the row is appended correctly
st.session_state.recent_rows.append(row)
# Update counters
st.session_state.total_packet_count += packets
st.session_state.ddos_flow_count += 1
# Update the statistics
total_packets.metric("Total Packets", st.session_state.total_packet_count)
ddos_flows.metric("DDoS Flows", st.session_state.ddos_flow_count)
benign_flows.metric("Benign Flows", st.session_state.benign_flow_count)
# Convert recent_rows deque to DataFrame
try:
active_flows_df = pd.DataFrame(list(st.session_state.recent_rows))
# Ensure DataFrame has expected columns
if not {'time', 'src', 'sport', 'dst', 'dport', 'protocol', 'packets'}.issubset(active_flows_df.columns):
st.error("DataFrame does not have the expected structure.")
continue
# Update active flows
active_flows_placeholder.dataframe(
active_flows_df[['time', 'src', 'sport', 'dst', 'dport', 'protocol', 'packets']],
height=300,
use_container_width=True,
hide_index=True
)
# Update the map with the simulated IP
geo_info = get_geolocation(ip)
if geo_info:
folium.Marker(
location=[geo_info['latitude'], geo_info['longitude']],
popup=ip,
icon=folium.Icon(color='red', icon='info-sign')
).add_to(marker_cluster)
# Update the map view
map_updated = True
except Exception as e:
st.error(f"Error creating DataFrame: {str(e)}")
if map_updated:
map_placeholder.empty()
st.session_state.map_counter += 1
st_folium(m, width=700, height=500, key=f"map_{st.session_state.map_counter}")
map_updated = False
# Process data in chunks
for chunk_index, chunk in enumerate(data_iterator):
for row_index, row in chunk.iterrows():
if stop_button:
st.write('Stopped by user')
break
# Update counters
st.session_state.total_packet_count += row['packets']
if row['label'] == 1:
st.session_state.ddos_flow_count += 1
else:
st.session_state.benign_flow_count += 1
# Update statistics
total_packets.metric("Total Packets", st.session_state.total_packet_count)
ddos_flows.metric("DDoS Flows", st.session_state.ddos_flow_count)
benign_flows.metric("Benign Flows", st.session_state.benign_flow_count)
# Update the time column with current time
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
row['time'] = current_time
# Update active flows table
st.session_state.recent_rows.append(dict(row)) # Append the dictionary of the row
# Convert recent_rows deque to DataFrame
try:
active_flows_df = pd.DataFrame(list(st.session_state.recent_rows))
active_flows_placeholder.dataframe(
active_flows_df[['time', 'src', 'sport', 'dst', 'dport', 'protocol', 'packets']],
height=300,
use_container_width=True,
hide_index=True
)
except Exception as e:
st.error(f"Error creating DataFrame: {str(e)}")
# Update the malicious IPs list if the IP is malicious
if row['label'] == 1:
if row['src'] not in st.session_state.malicious_ips:
st.session_state.malicious_ips[row['src']] = True
if len(st.session_state.malicious_ips) > 10:
st.session_state.malicious_ips.popitem(last=False)
# Add new malicious IP to the map
geo_info = get_geolocation(row['src'])
if geo_info:
folium.Marker(
location=[geo_info['latitude'], geo_info['longitude']],
popup=row['src'],
icon=folium.Icon(color='red', icon='info-sign')
).add_to(marker_cluster)
# Set flag to update map
map_updated = True
# Format malicious IPs as a numbered list
malicious_ips_text = "**Recent Malicious IPs:**\n"
for i, ip in enumerate(st.session_state.malicious_ips.keys(), 1):
malicious_ips_text += f"{i}. <span style='color: red;'>{ip}</span>\n"
malicious_ips_placeholder.markdown(malicious_ips_text, unsafe_allow_html=True)
# Update packet counts for the source IP
src_ip = row['src']
packets = row['packets']
if src_ip not in st.session_state.ip_packet_counts:
st.session_state.ip_packet_counts[src_ip] = 0
st.session_state.ip_packet_time_series[src_ip] = []
st.session_state.ip_packet_counts[src_ip] += packets
st.session_state.ip_packet_time_series[src_ip].append((current_time, st.session_state.ip_packet_counts[src_ip]))
# Add current total packet count to time series data
st.session_state.time_series_data.append((current_time, st.session_state.total_packet_count))
# Create and update the graphs
if len(st.session_state.ip_packet_counts) > 0:
fig = make_subplots(rows=3, cols=1,
subplot_titles=("Top 10 Source IPs by Packet Count",
"Total Packet Count Over Time",
"Packet Count per Source IP Over Time"))
top_ips = sorted(st.session_state.ip_packet_counts.items(), key=lambda x: x[1], reverse=True)[:10]
ips, counts = zip(*top_ips)
fig.add_trace(go.Bar(x=ips, y=counts), row=1, col=1)
times, packet_counts = zip(*st.session_state.time_series_data[-100:])
fig.add_trace(go.Scatter(x=times, y=packet_counts, mode='lines'), row=2, col=1)
for ip in ips:
ip_times, ip_counts = zip(*st.session_state.ip_packet_time_series[ip][-100:])
fig.add_trace(go.Scatter(x=ip_times, y=ip_counts, mode='lines', name=ip), row=3, col=1)
fig.update_layout(height=1200, showlegend=True)
fig.update_xaxes(title_text="Source IP", row=1, col=1)
fig.update_xaxes(title_text="Time", row=2, col=1)
fig.update_xaxes(title_text="Time", row=3, col=1)
fig.update_yaxes(title_text="Packet Count", row=1, col=1)
fig.update_yaxes(title_text="Total Packet Count", row=2, col=1)
fig.update_yaxes(title_text="Packet Count", row=3, col=1)
graphs_placeholder.plotly_chart(fig, use_container_width=True)
# Update the map if new points were added
if map_updated:
map_placeholder.empty()
st.session_state.map_counter += 1
st_folium(m, width=700, height=500, key=f"map_{st.session_state.map_counter}")
map_updated = False
time.sleep(0.1)
if stop_button:
break
st.write("Data processing complete")